An Efficient Cost Sharing Mechanism for the Prize-Collecting Steiner Forest Problem

Stefano Leonardi Universitá di Roma "La Sapienza"

DIMAP Workshop on Algorithmic Game Theory Warwick, March 25-28 2007

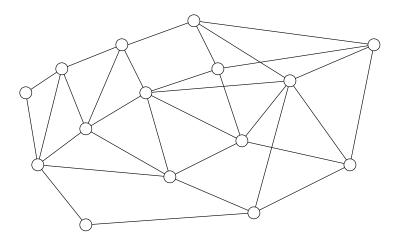
joint work with: A. Gupta (CMU), J. Könemann (Univ. of Waterloo), R. Ravi (CMU), G. Schäfer (TU Berlin)

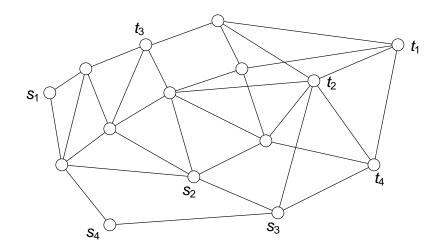
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

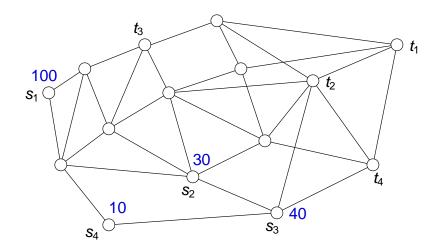
Part I: Cost Sharing Mechanisms

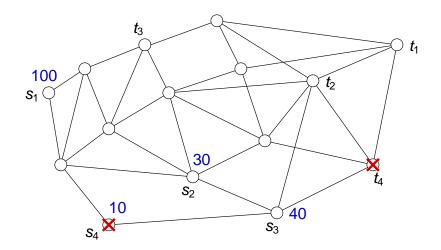
- cost sharing model, definitions, objectives
- state of affairs, new trade-offs
- tricks of the trade
- Part II: Prize-Collecting Steiner Forest
 - primal-dual algorithm PCSF
 - cross-monotonicity and budget balance
 - general reduction technique
- Conclusions and Open Problems

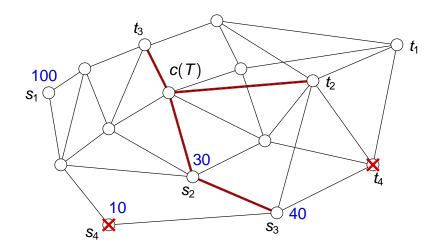
< ロ > < 同 > < 回 > < 回 > < □ > <

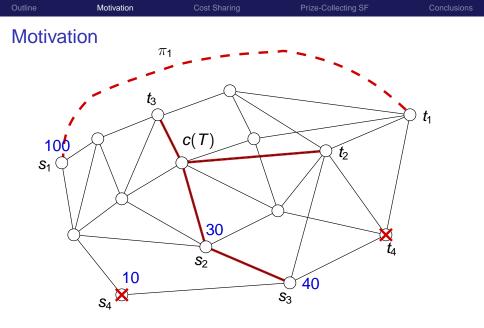












Prize-Collecting Steiner Forest Problem (PCSF)

Given:

Motivation

Outline

- network N = (V, E, c) with edge costs $c : E \to \mathbb{R}^+$
- ▶ set of *n* terminal pairs $R = \{(s_1, t_1), \dots, (s_n, t_n)\} \subseteq V \times V$
- ▶ penalty $\pi_i \ge 0$ for every pair $(s_i, t_i) \in R$.

Feasible solution: forest *F* and subset $Q \subseteq R$ such that for all $(s_i, t_i) \in R$: either s_i, t_i are connected in *F*, or $(s_i, t_i) \in Q$

Objective: compute feasible solution (*F*, *Q*) such that $c(F) + \pi(Q)$ is minimized

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Previous and Our Results

Approximation algorithms:

- 2.54-approximate algorithm (LP rounding)
- 3-approximate combinatorial algorithm (primal-dual)

[Hajiaghayi and Jain '06]

・ロット (雪) (日) (日) 日

This talk:

Outline

 simple 3-approximate primal-dual combinatorial algorithm that additionally achieves several desirable game-theoretic objectives

Cost Sharing Model

Setting:

- service provider offers some service
- ► set *U* of *n* potential users, interested in service
- every user $i \in U$:
 - has a (private) utility $u_i \ge 0$ for receiving the service
 - ► announces bid b_i ≥ 0, the maximum amount he is willing to pay for the service
- cost function $C: 2^U \to \mathbb{R}^+$

C(S) = cost to serve user-set $S \subseteq U$ (here: C(S) = optimal cost of PCSF for S)

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Cost sharing mechanism M:

- collects all bids $\{b_i\}_{i \in U}$ from users
- decides a set $S^M \subseteq U$ of users that receive service

Cost Sharing

• determines a payment $p_i > 0$ for every user $i \in S^M$

Benefit: user *i* receives benefit $u_i - p_i$ if served, zero otherwise

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his benefit (using his bid)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 二 国

Objectives

1. β -budget balance: approximate total cost

$$C(S^M) \le p(S^M) \le \beta \cdot C(S^M), \quad \beta \ge 1$$

2. Group-strategyproofness: bidding truthfully $b_i = u_i$ is a dominant strategy for every user $i \in U$, even if users cooperate

3. α -efficiency: approximate maximum social welfare

$$u(S^M) - c(S^M) \ge \frac{1}{lpha} \cdot \max_{S \subseteq U}[u(S) - C(S)], \quad lpha \ge 1$$

No mechanism can achieve (approximate) budget balance, truthfullness and efficiency [Feigenbaum et al. '03]

・ロット (雪) (日) (日) (日)

Objectives

1. β -budget balance: approximate total cost

$$C(S^M) \le p(S^M) \le \beta \cdot C(S^M), \quad \beta \ge 1$$

2. Group-strategyproofness: bidding truthfully $b_i = u_i$ is a dominant strategy for every user $i \in U$, even if users cooperate

3. α -efficiency: approximate maximum social welfare

$$u(S^M) - c(S^M) \ge \frac{1}{lpha} \cdot \max_{S \subseteq U}[u(S) - C(S)], \quad lpha \ge 1$$

No mechanism can achieve (approximate) budget balance, truthfullness and efficiency [Feigenbaum et al. '03]

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Previous Results

Arithan	Drahlam	0	
Authors	Problem	β	
[Moulin, Shenker '01]	submodular cost	1	
[Jain, Vazirani '01]	MST	1	
	Steiner tree and TSP	2	
[Devanur, Mihail, Vazirani '03]	set cover	log n	
(strategyproof only)	facility location	1.61	
[Pal, Tardos '03]	facility location	3	
	SRoB	15	
[Leonardi, Schäfer '03], [Gupta et al. '03]	SRoB	4	
[Leonardi, Schäfer '03]	CFL	30	
[Könemann, Leonardi, Schäfer '05]	Steiner forest	2	
Lower bounds			
[Immorlica, Mahdian, Mirrokni '05]	edge cover	2	
	facility location	3	
	vertex cover	n ^{1/3}	
	set cover	n	
[Könemann, Leonardi, Schäfer, van Zwam '05]	Steiner tree	2	

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 -

Objectives

1. β -budget balance: approximate total cost

$$C(S^M) \leq p(S^M) \leq \beta \cdot C(S^M), \quad \beta \geq 1$$

2. Group-strategyproofness: bidding truthfully $b_i = u_i$ is a dominant strategy for every user $i \in U$, even if users cooperate

3. α -approximate: approximate minimum social cost

$$\Pi(S^{\mathcal{M}}) \leq \alpha \cdot \min_{S \subseteq U} \Pi(S), \quad \alpha \geq 1$$

where $\Pi(S) := u(U \setminus S) + C(S)$ [Roughgarden and Sundararajan '06]

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Previous/Recent Work

Authors	Problem	β	α
[Roughgarden, Sundararajan '06]	submodular cost	1	$\Theta(\log n)$
	Steiner tree	2	$\Theta(\log^2 n)$
[Chawla, Roughgarden, Sundarara- jan '06]	Steiner forest	2	$\Theta(\log^2 n)$
[Roughgarden, Sundararajan]	facility location	3	$\Theta(\log n)$
	SRoB	4	$\Theta(\log^2 n)$
[Gupta et al. '07]	prize-collecting Steiner forest	3	$\Theta(\log^2 n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tricks of the Trade...

Cost sharing method: function $\xi : U \times 2^U \to \mathbb{R}^+$ $\xi(i, S) = \text{cost share}$ of user *i* with respect to set $S \subseteq U$

 β -budget balance:

$$C(S) \leq \sum_{i \in S} \xi(i, S) \leq \beta \cdot C(S) \quad \forall S \subseteq U$$

Cross-monotonicity: cost share of user *i* does not increase as additional users join the game:

$$\forall \mathbf{S}' \subseteq \mathbf{S}, \ \forall i \in \mathbf{S}' : \quad \xi(i, \mathbf{S}') \ge \xi(i, \mathbf{S})$$

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Moulin Mechanism

Given: cross-monotonic and $\beta\text{-budget balanced cost sharing method }\xi$

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced

[Moulin, Shenker '01]

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

[Jain, Vazirani '01]

Moulin mechanism $M(\xi)$:

- 1: Initialize: $S^M \leftarrow U$
- 2: If for each user $i \in S^M$: $\xi(i, S^M) \leq b_i$ then STOP
- 3: Otherwise, remove from S^M all users with $\xi(i, S^M) > b_i$ and repeat

Summability

Given: arbitrary order σ on users in U

Order subset $S \subseteq U$ according to σ :

$$S := \{i_1, \ldots, i_{|S|}\}$$

Let $S_j :=$ first *j* users of S

 α -summability: ξ is α -summable if

$$orall \sigma, \ orall \mathbf{S} \subseteq oldsymbol{U}: \quad \sum_{j=1}^{|\mathbf{S}|} \xi(i_j, \mathbf{S}_j) \leq lpha \cdot oldsymbol{C}(\mathbf{S})$$

3

< ロ > < 同 > < 回 > < 回 > .

Approximability

Given: cross-monotonic and β -budget balanced cost sharing method ξ that satisfies α -summability

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced and $(\alpha + \beta)$ -approximate

[Roughgarden, Sundararajan '06]

ヘロト 人間 ト ヘヨト ヘヨト

-

Our Results

- cost sharing method ξ that is cross-monotonic and 3-budget balanced for PCSF
 (byproduct: simple primal-dual 3-approximate algorithm)
- reduction technique that shows that Moulin mechanism M(ξ) is Θ(log² n)-approximate (technique applicable to other prize-collecting problems)
- simple proof of O(log³ n)-summability for Steiner forest cost sharing method

< ロ > < 同 > < 回 > < 回 > < □ > <

Goal and Main Idea

Goal: develop an algorithm that for each set $S \subseteq U$ of users (terminal pairs) defines a cost share $\xi(i, S)$ for each user $i \in S$ such that cost shares are

- 3-budget balanced and
- cross-monotonic

Main idea: develop 3-approximate primal-dual algorithm for PCSF and share dual growth among terminal pairs

- budget balance follows from approximation guarantee
- cross-monotonicity requires new ideas!!

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

LP Formulation

$$\begin{array}{ll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{(u,\bar{u}) \in R} \pi(u,\bar{u}) \cdot x_{u\bar{u}} \\ \text{s.t.} & \sum_{e \in \delta(S)} x_e + x_{u\bar{u}} \geq 1 \quad \forall S \in \mathcal{S}, \ \forall (u,\bar{u}) \odot S \\ & x_e \geq 0 \quad \forall e \in E \\ & x_{u\bar{u}} \geq 0 \quad \forall (u,\bar{u}) \in R \end{array}$$

S = set of all Steiner cuts (separate at least one pair) $\delta(S)$ = edges that cross cut defined by S $(u, \bar{u}) \odot S$ = terminal pair (u, \bar{u}) separated by S

3

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Dual LP — Simplified

$$\begin{array}{ll} \max & \sum_{S \in \mathcal{S}} y_S \\ \text{s.t.} & \sum_{S: e \in \delta(S)} y_S \leq c_e \quad \forall e \in E \\ & \xi_{u\bar{u}} \leq \pi(u,\bar{u}) \quad \forall (u,\bar{u}) \in R \\ & \xi_{S,u\bar{u}} \geq 0 \quad \forall S \in \mathcal{S}, \ \forall (u,\bar{u}) \odot S \end{array}$$

$$\begin{split} \xi_{u\bar{u}} &:= \sum_{\substack{\mathfrak{S}: (u,\bar{u}) \odot \mathfrak{S}}} \xi_{\mathfrak{S}, u\bar{u}} \quad \text{(total cost share of } (u,\bar{u})\text{)} \\ y_{\mathfrak{S}} &:= \sum_{(u,\bar{u}) \odot \mathfrak{S}} \xi_{\mathfrak{S}, u\bar{u}} \quad \text{(total dual of Steiner cut } S\text{)} \end{split}$$

Stefano Leonardi

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Visualizing the Dual



 dual y_S of Steiner cut S is visualized as moat around S of radius y_S

edge e is tight if

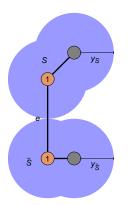
$$\sum_{S:e\in\delta(S)}y_S=c_e$$

< ロ > < 同 > < 回 > < 回 > .

 growth of moat corresponds to an increase in the dual value

э

Visualizing the Dual



- dual y_S of Steiner cut S is visualized as moat around S of radius y_S
- edge e is tight if

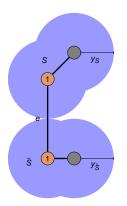
$$\sum_{\mathsf{S}: e \in \delta(\mathsf{S})} y_\mathsf{S} = c_e$$

< ロ > < 同 > < 回 > < 回 > < □ > <

 growth of moat corresponds to an increase in the dual value

3

Visualizing the Dual



- dual y_S of Steiner cut S is visualized as moat around S of radius y_S
- edge e is tight if

$$\sum_{\mathsf{S}: \mathsf{e} \in \delta(\mathsf{S})} \mathsf{y}_{\mathsf{S}} = \mathsf{c}_{\mathsf{e}}$$

< □ > < 同 > < 回 > < 回 > < 回 >

 growth of moat corresponds to an increase in the dual value

э

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$\mathtt{d}(u,\bar{u}):=\frac{1}{2}d_{G}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi_{u\bar{u}}^{ au} < \pi(u, \bar{u}) \quad ext{and} \quad au \leq \mathrm{d}(u, \bar{u}).$$

Call a moat active if it contains at least one active terminal

3

< □ > < 同 > < 回 > < 回 > < 回 >

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$\mathrm{d}(u,\bar{u}):=\frac{1}{2}d_{\mathrm{G}}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi^{ au}_{uar{u}} < \pi(u,ar{u}) \quad ext{and} \quad au \leq ext{d}(u,ar{u}).$$

Call a moat active if it contains at least one active terminal

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$\mathrm{d}(u,\bar{u}):=\frac{1}{2}d_{\mathrm{G}}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi_{u\bar{u}}^{ au} < \pi(u, \bar{u}) \quad ext{and} \quad au \leq \operatorname{d}(u, \bar{u}).$$

Call a moat active if it contains at least one active terminal

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Outline

process over time

- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Motivation

Outline

process over time

- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

・ロット (雪) (日) (日) (日)

Outline

- process over time
- at every time \(\tau\): grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Outline

- process over time
- at every time τ: grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

・ロット (雪) (日) (日) (日)

Outline

- process over time
- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ► if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

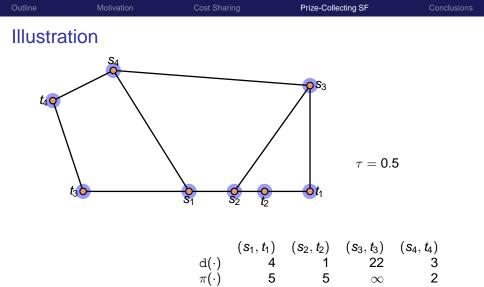
< ロ > < 同 > < 回 > < 回 > < □ > <

Primal-dual Algorithm

Outline

- process over time
- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ► if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

< ロ > < 同 > < 回 > < 回 > < □ > <



 ξ^{τ}

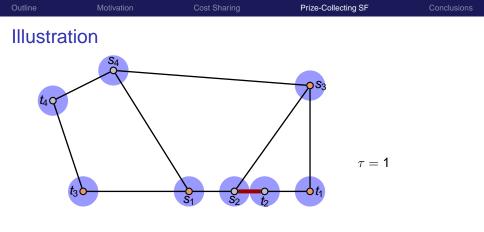
1

1

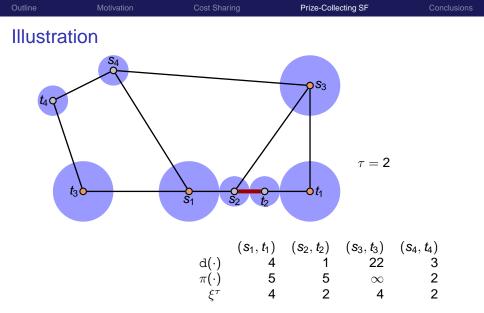
1

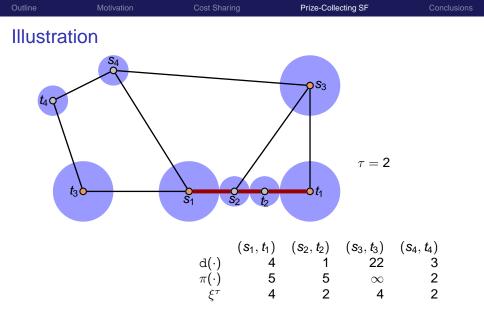
<ロ> (四) (四) (三) (三) (三) (三)

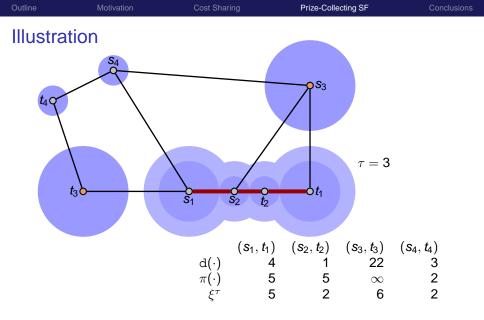
Outline	Motivation	Cost Sharing	Prize-Collecting SF	Conclusions
Illustration				
t4 or	54 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 51 52 52 52	$\tau = 1$	

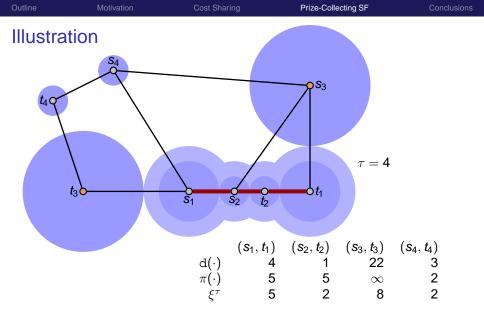


<□> <圖> <圖> < 圖> < 圖> < 圖> < 圖>

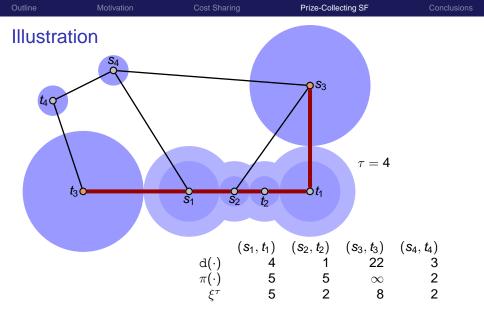








・ロト・日本・日本・日本・日本・日本



Lem: ξ is cross-monotonic

Proof (idea): at every time τ and for any $S \subseteq S'$

- moat system wrt. S is a refinement of moat system wrt. S'
- cost share of u wrt. S is at least cost share of u wrt. S'

Lem: ξ is 3-budget balanced

Proof (idea):

- ► cost of solution is at most $2 \sum y_S$ for Steiner forest and $\sum \xi_{u\bar{u}}$ for total penalty
- need to prove that $\sum y_{S} = \sum_{(u,\overline{u}) \in R} \xi_{u,\overline{u}} \leq C(R)$

Proving budget balance

Lemma:
$$\sum_{(u,\overline{u})\in R} \xi_{u,\overline{u}} \leq C(R)$$

Proof:

- Let C(R) = c(F^{*}) + π(Q^{*}), with (F^{*}, Q^{*}) denoting the optimal solution.
- We have

$$\sum_{(u,\bar{u})\in\mathsf{Q}^*}\xi_{u\bar{u}}\leq\pi(\mathsf{Q}^*).$$

It remains to be shown:

$$\sum_{(u,ar{u})\in R/Q^*}\xi_{uar{u}}\leq c(F^*)$$

Outline

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Proving $\sum_{(u,\overline{u})\in R} \xi_{u,\overline{u}} \leq C(R)$

- For each connected component T ∈ F*, let R(T) be the set of terminal pairs that are connected by T.
- We prove a slightly weaker result:

$$\sum_{(u,\bar{u})\in \mathcal{R}(T)}\xi_{u\bar{u}}\leq \frac{3}{2}c(T).$$
 (1)

- M^T(T): set of moats at time *τ* that contain at least one active terminal of R(T).
- Let let $(w, \overline{w}) \in R(T)$, be the pair that is active longest.
- ▶ Need to show that the total growth of $\mathcal{M}^{\tau}(T)$ for all $\tau \in [0, d(w, \bar{w})]$ is at most $\frac{3}{2}c(T)$.

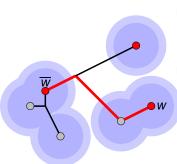
・ロット (雪) (日) (日) 日

Proving $\sum_{(u,\overline{u})\in R} \xi_{u,\overline{u}} \leq C(R)$

- If there are at I $\mathcal{M}^{\tau}(T)$, they a of the edges o • Let $\tau_0 \leq d(w, \bar{w})$ that $\mathcal{M}^{\tau_0}(T)$ de • The total grown all $\tau \leq \tau_0$ is at We are left with the single moa
- The moats of *M*^τ(*T*) are disjoint at any time *τ*.
 - If there are at least two active moats in *M*^τ(*T*), they all intersect a different part of the edges of *T*.
 - Let τ₀ ≤ d(w, w̄) be the first time such that M^{τ₀}(T) does not load T.
 - The total growth of moats in $\mathcal{M}^{\tau}(T)$ for all $\tau \leq \tau_0$ is at most c(T).
 - We are left with bounding the growth of the single moat $\mathcal{M}^{\tau_0}(T) = \{M^{\tau_0}\}$ for each $\tau \in [\tau_0, d(w, \overline{w})]$.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Proving $\sum_{(u,\overline{u})\in R} \xi_{u,\overline{u}} \leq C(R)$



- Growth of M^{τ} for all times
 - $\tau \in [\tau_0, d(w, \bar{w})]$ is at most $d(w, \bar{w}) \tau_0$.
- Since w and w̄ are connected by T, this additional growth is at most d(w, w̄) ≤ c(T)/2.
- The $\frac{3}{2}c(T)$ upper bound on the total cost shares of pairs in R(T) then follows.

< ロ > < 同 > < 回 > < 回 > < □ > <

Outline

Approximate social cost

$\alpha\text{-approximate minimum social cost}$

$$\Pi(S^M) \le lpha \cdot \min_{S \subseteq U} \Pi(S), \quad lpha \ge 1$$

where $\Pi(S) := u(U \setminus S) + C(S)$

Given: cross-monotonic and β -budget balanced cost sharing method ξ that satisfies α -summability

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced and $(\alpha + \beta)$ -approximate

[Roughgarden, Sundararajan '06]

Outline

Approximate social cost

Motivation

 α -approximate minimum social cost

$$\Pi(S^M) \leq lpha \cdot \min_{S \subseteq U} \Pi(S), \quad lpha \geq 1$$

where $\Pi(S) := u(U \setminus S) + C(S)$

Given: cross-monotonic and β -budget balanced cost sharing method ξ that satisfies α -summability

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced and $(\alpha + \beta)$ -approximate

[Roughgarden, Sundararajan '06]

Partitioning Lemma

Motivation

Given: cross-monotonic cost sharing method ξ on U that is β -budget balanced for C

Lem: If there is a partition $U = U_1 \cup U_2$ such that the Moulin mechanism $M(\xi)$ is α_i -approximate on U_i for all $i \in \{1, 2\}$, then $M(\xi)$ is $(\alpha_1 + \alpha_2)\beta$ -approximate on U

◆ロ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ■ ● ● ● ●

Partitioning Lemma

Motivation

Given: cross-monotonic cost sharing method ξ on U that is β -budget balanced for C

Lem: If there is a partition $U = U_1 \cup U_2$ such that the Moulin mechanism $M(\xi)$ is α_i -approximate on U_i for all $i \in \{1, 2\}$, then $M(\xi)$ is $(\alpha_1 + \alpha_2)\beta$ -approximate on U

・ロット (雪) (日) (日) 日

U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

・ロン・(部)・・ヨン・ヨン 三連

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all i, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is U. Moreover, U minimizes social cost.

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

・ロット (雪) (日) (日) 日

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

・ロット (雪) (日) (日) 日

U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi' = \text{cross-monotonic cost sharing method for Steiner forest problem}$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

 U_2 = set of all users *i* with $u_i < \pi_i$

$\xi^\prime = {\rm cross}{\rm -monotonic\ cost\ sharing\ method\ for\ Steiner\ forest\ problem}$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

◆□▶ ◆□▶ ◆回▶ ◆回▶ ◆□ ● のへの

 U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi'={\rm cross}{\rm -monotonic\ cost\ sharing\ method\ for\ Steiner\ forest\ problem$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

 U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi'=\mbox{cross-monotonic cost}$ sharing method for Steiner forest problem

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \leq C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

・ロット (雪) (日) (日) 日

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \leq C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \leq C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \leq C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Putting the Pieces together...

We showed:

Outline

- $M(\xi)$ is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

< ロ > < 同 > < 回 > < 回 > < □ > <

Putting the Pieces together...

We showed:

- $M(\xi)$ is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

< ロ > < 同 > < 回 > < 回 > < □ > <

Putting the Pieces together...

We showed:

- $M(\xi)$ is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Conclusions and Open Problems

Motivation

- developed a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and Θ(log²(n))-approximate
- open problem: find an LP formulation for our PCSF primal-dual algorithm
- ▶ open problem: give a combinatorial (3 ε)-approximate algorithm for PCSF

Outline

・ロット (雪) (日) (日) 日