Well Supported Approximate Equilibria in Bimatrix Games

Workshop on Algorithmic Game Theory, DIMAP, University of Warwick, March 2007

Paul Spirakis

Joint work with Spyros Kontogiannis (Univ. of Ioannina and CTI)

P. Spirakis (spirakis@cti.gr)

Skeleton

Well Supported Approximate Nash Equilibria in Bimatrix Games

Introduction

- Bimatrix Games Notation
- Approximations of Nash Equilibria
- Recent Advances in Approximations of NE

Existence and Construction of non-trivial SuppNE
A Subexponential Scheme for SuppNE
A Graph Theoretic Construction of SuppNE
An LP Based Construction of SuppNE
SuppNE in Random Games

3 Recap and Open Problems

What are the Bimatrix Games?

Definition (Bimatrix Games)

An $m \times n$ bimatrix game $\langle A, B \rangle$ is a 2-player game in strategic form in which the payoffs of the two players are determined by a pair of $m \times n$ real matrices A, B (aka the bimatrix (A, B)).

The two players choose rows and columns:

- either deterministically (pure strategy)...
- or probabilistically (mixed strategy)...
- and get expected payoffs p^TAq and p^TBq.

Some Special Cases of Bimatrix Games

- [a, b] Bimatrix Game: A bimatrix game (A, B) whose payoff matrices get values from the real interval [a, b].
- Normalized Bimatrix Game: A [0, 1]-bimatrix game.
- Win Lose Bimatrix Game: A bimatrix game $\langle A, B \rangle$ whose payoff matrices get values from the set $\{0, 1\}$.
- λ-Sparse Win Lose Bimatrix Game: A win lose bimatrix game having at most λ (0, 1)-elements per column and at most λ (1,0)-elements per row of the bimatrix.

What is the Outcome of the Game?

- The two players
 - ... choose their strategy selfishly.
 - ... are aware of the bimatrix, and of the selfishness of the opponent.
 - ... do not cooperate their actions.
 - \Rightarrow This leads to hope for existence of equilibrium points.
- What is the solution of the bimatrix game?

What is the Outcome of the Game?

- The two players
 - ... choose their strategy selfishly.
 - ... are aware of the bimatrix, and of the selfishness of the opponent.
 - ... do not cooperate their actions.
 - \Rightarrow This leads to hope for existence of equilibrium points.
- What is the solution of the bimatrix game?

Definition (Nash Equilibrium (NE)) A strategies profile $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ is Nash Equilibrium of $\langle A, B \rangle$ iff: $\bar{\mathbf{x}} \in \arg \max_{\mathbf{x}} \{ \mathbf{x}^T A \bar{\mathbf{y}} \}$ and $\bar{\mathbf{y}} \in \arg \max_{\mathbf{y}} \{ \bar{\mathbf{x}}^T B \mathbf{y} \}$ or equivalently, $\forall i, r \in [m], \bar{x}_i > 0 \Rightarrow A^i \bar{\mathbf{y}} \ge A^r \bar{\mathbf{y}}$ and $\forall j, s \in [n], \bar{y}_i > 0 \Rightarrow B_i^T \bar{\mathbf{x}} \ge B_s^T \bar{\mathbf{x}}$.

How about Approximate Solutions?

Definition (Approximations of NE in Normalized Games)

- Approximate NE (ε-ApproxNE): Each player cannot have a positive additive gain strictly larger than ε, by unilaterally changing her own strategy.
- Well Supported Approximate NE (ε-SuppNE): Each player adopts with positive probability only actions that are at most a positive additive term ε worse than their optimal choice of an action, given the opponent's strategy:

 $\begin{aligned} & (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \varepsilon - \mathsf{SuppNE}(A, B) \Leftrightarrow \\ & \Leftrightarrow & \left\{ \begin{array}{l} \forall i, r \in [m], \bar{x}_i > 0 \quad \Rightarrow \quad A^i \bar{\mathbf{y}} \ge A^r \bar{\mathbf{y}} - \varepsilon \\ \forall j, s \in [n], \bar{y}_j > 0 \quad \Rightarrow \quad B_j^T \bar{\mathbf{x}} \ge B_s^T \bar{\mathbf{x}} - \varepsilon \end{array} \right. \end{aligned}$

What's the difference again?

P. Spirakis (spirakis@cti.gr)

How about Approximate Solutions?

Definition (Approximations of NE in Normalized Games)

- Approximate NE (ε-ApproxNE): Each player cannot have a positive additive gain strictly larger than ε, by unilaterally changing her own strategy.
- Well Supported Approximate NE (ε-SuppNE): Each player adopts with positive probability only actions that are at most a positive additive term ε worse than their optimal choice of an action, given the opponent's strategy:

 $\begin{aligned} & (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \varepsilon - \mathsf{SuppNE}(A, B) \Leftrightarrow \\ & \Leftrightarrow & \left\{ \begin{array}{l} \forall i, r \in [m], \bar{x}_i > 0 \quad \Rightarrow \quad A^i \bar{\mathbf{y}} \ge A^r \bar{\mathbf{y}} - \varepsilon \\ \forall j, s \in [n], \bar{y}_j > 0 \quad \Rightarrow \quad B_j^T \bar{\mathbf{x}} \ge B_s^T \bar{\mathbf{x}} - \varepsilon \end{array} \right. \end{aligned}$

What's the difference again?

P. Spirakis (spirakis@cti.gr)

ApproxNE vs. SuppNE

- Both are generalizations of NE: Each 0–ApproxNE and each 0–SuppNE are (exact) NE.
- Every ε-SuppNE is also a ε-ApproxNE (trivial observation).
- From any $\frac{\varepsilon^2}{8n}$ -ApproxNE we can construct in polynomial time an ε -SuppNE {Chen,Deng,Teng 2006}.
- SuppNE seem to be better motivated by selfish behavior: Each player (rather than choosing best response actions), chooses approximate best response actions with positive probability.
- It seems much harder to provide SuppNE.

the profile $\left(\mathbf{e_1}, \frac{1}{2}(\mathbf{e_1} + \mathbf{e_2})\right)$ is 0.5–ApproxNE but 1–SuppNE.

What do we know about (exact) NE?

- The problem k-NASH of computing any NE of an arbitrary k-person strategic game, is one of the most important algorithmic questions at the boundary between \mathcal{P} and \mathcal{NP} . {Papadimitriou (ESA 1996, STOC 2001)}.
- k-NASH is \mathcal{PPAD} -complete, even for...

 $\ldots k = 4 \{ \text{Daskalakis,Goldberg,Papadimitriou (STOC 2005)} \}$,

- $\ldots k = 3 \{ \text{Daskalakis, Papadimitriou (ECCC 2005)} \}$,
- ... or even k = 2 {Chen,Deng (FOCS 2006)} !!!
- The correlation of \mathcal{PPAD} with other complexity classes is not clear.

P. Spirakis (spirakis@cti.gr)

A Useful(?) Tool

- {Lemke, Howson 1964} : A combinatorial algorithm based on pivots, that computes (exact) NE for arbitrary bimatrix games.
- {Savani, von Stengel (FOCS 2004)}: The algorithm of Lemke and Howson takes an exponential number of pivots to converge to a NE, independently of the initial choice it makes, even in win lose instances.
- How about approximations of NE?

Advances in ApproxNE

- {Chen,Deng,Teng (FOCS 2006b)} : Unless $\mathcal{PPAD} \subseteq \mathcal{P}$, there is no algorithm for ε -ApproxNE with time complexity $poly(n, 1/\varepsilon)$, for any $\varepsilon = n^{-\Theta(1)} \Rightarrow$ (probably) there is no FPTAS!!!
- {Chen,Deng,Teng (FOCS 2006b)} : Unless $\mathcal{PPAD} \subseteq \mathcal{RP}$, there is no algorithm for 2–NASH with time complexity $poly(n, 1/\sigma)$ (σ = the size of the perturbations of the elements in the bimatrix).
- So far we have no Polynomial Time Approximation Scheme for computing ε−ApproxNE for any constant ε > 0.
- Important Observation: For any constant $\varepsilon > 0$, there exist (uniform) profiles with with support sizes $O(\log(m+n)/\varepsilon^2)$, which are ε -ApproxNE {Lipton, Markakis, Mehta (EC 2003)}. \Rightarrow Subexponential computational time!!!

How about Constant ApproxNE?

- {Kontogiannis,Panagopoulou,Spirakis (WINE 2006)} Polynomial time construction of $\frac{2+\lambda}{4}$ -ApproxNE (λ = smallest equilibrium payoff to a player).
- {Daskalakis,Mehta,Papadimitriou (WINE 2006)} Polynomial time construction of $\frac{1}{2}$ -ApproxNE.

Recent Development: They improved this to 0.38-ApproxNE.

- {Daskalakis,Mehta,Papadimitriou (WINE 2006)} Construction of some ε -SuppNE in polynomial time, for some (non-constant) $1 > \varepsilon > 0$, if a graph theoretic conjecture holds (not true for small values!!!).
- Remark: Nothing is known about non-trivial SuppNE!!!

P. Spirakis (spirakis@cti.gr)

Skeleton

Well Supported Approximate Nash Equilibria in Bimatrix Games

Introduction

- Bimatrix Games Notation
- Approximations of Nash Equilibria
- Recent Advances in Approximations of NE

Existence and Construction of non-trivial SuppNE

- A Subexponential Scheme for SuppNE
- A Graph Theoretic Construction of SuppNE
- An LP Based Construction of SuppNE
- SuppNE in Random Games

3 Recap and Open Problems

Existence of SuppNE (I)

Theorem

For any $m \times n$ [0, 1]-bimatrix game $\langle A, B \rangle$, and any constant $\varepsilon \in (0, 1)$, there is an ε -SuppNE with support sizes $\left\lceil \frac{\log(2n)}{2\varepsilon^2} \right\rceil$.

WHY?

• Althoefer's Approximation Lemma: Assume C is any $m \times n$ matrix over the real numbers, with $0 \le C_{i,j} \le 1, \forall (i,j) \in [m] \times [n]$. Let $\mathbf{p} \in \Delta_m$ be any *m*-probability vector. Fix arbitrary positive constant $\varepsilon > 0$. Then, there exists another probability vector $\hat{\mathbf{p}} \in \Delta_m$ with $|supp(\hat{\mathbf{p}})| \le k \equiv \left\lceil \frac{\log(2n)}{2\varepsilon^2} \right\rceil$, such that $|\mathbf{p}^T C_j - \hat{\mathbf{p}}^T C_j| \le \varepsilon, \ \forall j \in [n]$. Moreover, $\hat{\mathbf{p}}$ is a *k*-uniform strategy.

Existence of SuppNE (I)

Theorem

For any $m \times n$ [0, 1]-bimatrix game $\langle A, B \rangle$, and any constant $\varepsilon \in (0, 1)$, there is an ε -SuppNE with support sizes $\left\lceil \frac{\log(2n)}{2\varepsilon^2} \right\rceil$.

WHY?

• Althoefer's Approximation Lemma: Assume C is any $m \times n$ matrix over the real numbers, with $0 \leq C_{i,j} \leq 1, \forall (i,j) \in [m] \times [n]$. Let $\mathbf{p} \in \Delta_m$ be any m-probability vector. Fix arbitrary positive constant $\varepsilon > 0$. Then, there exists another probability vector $\hat{\mathbf{p}} \in \Delta_m$ with $|supp(\hat{\mathbf{p}})| \leq k \equiv \left\lceil \frac{log(2n)}{2\varepsilon^2} \right\rceil$, such that $|\mathbf{p}^T C_j - \hat{\mathbf{p}}^T C_j| \leq \varepsilon, \forall j \in [n]$. Moreover, $\hat{\mathbf{p}}$ is a k-uniform strategy.

Existence of SuppNE (II)

WHY? (contd.)

- Application of Approximation Lemma: Wrt arbitrary $(\mathbf{p}, \mathbf{q}) \in NE(A, B)$, consider $(\hat{\mathbf{p}}, \hat{\mathbf{q}})$ s.t. $\forall j \in [n], |\mathbf{p}^T B_j \hat{\mathbf{p}}^T B_j| \le \varepsilon$, and $\forall i \in [m], |A^i \mathbf{q} A^j \hat{\mathbf{q}}| \le \varepsilon$.
- Proposition: Since p̂ is produced via a hypothetical sampling of p, it holds that support(p̂) ⊆ support(p).

 $\begin{array}{ccc} \forall i \in [m], \hat{p}_{i} > 0 & \stackrel{\prime * \text{ Sampling } * \prime}{\Longrightarrow} & p_{i} > 0 \\ & \stackrel{\prime * \text{ Nash Prop. } * \prime}{\Longrightarrow} & A^{i} \mathbf{q} \geq A^{r} \mathbf{q}, \ \forall r \in [m] \\ & \stackrel{\prime * \text{ Approx. Lemma } * \prime}{\Longrightarrow} & A^{i} \hat{\mathbf{q}} + \varepsilon \geq A^{r} \hat{\mathbf{q}} - \varepsilon, \ \forall r \in [m] \\ & \implies & A^{i} \hat{\mathbf{q}} \geq A^{r} \hat{\mathbf{q}} - 2\varepsilon, \ \forall r \in [m] \end{array}$

SuppNE for Win Lose Games (I)

Theorem

For any win lose bimatrix game, there exists a polynomial time constructible $\left(1 - \frac{2}{g}\right)$ – SuppNE, where g is the girth of the Nash Dynamics graph (g = 2, if there is no cycle).

SuppNE for Win Lose Games (II)

WHY? (Step 1)

- Cut off win lose games with PNE.
- The following structures are forbidden in the bimatrix:

$$\begin{bmatrix} (0, \star) \\ \vdots \\ (0, \star) \\ (0, 1) \\ (0, \star) \\ \vdots \\ (0, \star) \end{bmatrix} \begin{bmatrix} (\star, 0) \cdots (\star, 0) (1, 0) (\star, 0) \cdots (\star, 0) \end{bmatrix}$$

- Proposition: Any row (column) of (A, B) with a (1,0)-element ((0,1)-element) must also have a (0,1)-element ((1,0)-element).
- \Rightarrow Each non-(0,0)-element belongs to a cycle of the Nash Dynamics graph.

P. Spirakis (spirakis@cti.gr)

SuppNE for Win Lose Games (III)

WHY? (Step 2)

• A shortest cycle in the Nash Dynamics graph defines a $\frac{g}{2}$ -Matching Pennies subgame:

(1,0) (0,0) (0,0)	(0, 1) (1, 0) (0, 0)	(0,0) (0,1) (1,0)	···· ···	(0,0) (0,0) (0,0)	$(0,0) \\ (0,0) \\ (0,0)$	$ \begin{bmatrix} (0,1) \\ (0,1) \\ (0,1) \end{bmatrix} $
(0,0) (0,1)	: (0,0) (0,0)	: (0,0) (0,0)	14. 	: (1,0) (0,0)	: (0, 1) (1,0)	(0, 1) (0, 1)

• The uniform profile on the rows and columns comprising a (g/2)-GMP is a (1-2/g)-SuppNE of the win lose game.

SuppNE for [0, 1]—Bimatrix Games

Theorem

For any normalized bimatrix game, there exists a polynomial time constructible $\left(1-\frac{1}{g}\right)$ – SuppNE, where g is the girth of the Nash Dynamics graph (g = 2, if there is no cycle).

WHY?

{Daskalakis,Mehta,Papadimitriou (WINE2006)} :

- Create a win lose image by rounding up to 1 values greater than ¹/₂ and down to 0 values lower than ¹/₂.
- Any ε-SuppNE of the win lose image is a ^{1+ε}/₂-SuppNE of the initial game.

 Simple application of the above observation to our result for win lose games.

SuppNE for [0, 1]—Bimatrix Games

Theorem

For any normalized bimatrix game, there exists a polynomial time constructible $\left(1 - \frac{1}{g}\right)$ – SuppNE, where g is the girth of the Nash Dynamics graph (g = 2, if there is no cycle).

WHY?

- {Daskalakis,Mehta,Papadimitriou (WINE2006)} :
 - Create a win lose image by rounding up to 1 values greater than $\frac{1}{2}$ and down to 0 values lower than $\frac{1}{2}$.
 - Any ε -SuppNE of the win lose image is a $\frac{1+\varepsilon}{2}$ -SuppNE of the initial game.
- Simple application of the above observation to our result for win lose games.

Applications of the Graph Theoretic Approach

- There is a polynomial time constructible ε–SuppNE, for some constant 1 > ε > 0, for any normalized bimatrix game that maps to a win lose game of constant girth.
- For λ-sparse win lose games with non-constant girth, our construction gives an o(1) –SuppNE!!!
- For normalized games mapping to λ -sparse win lose games of large girth, our construction provides a $\left(\frac{1}{2} + o(1)\right)$ -SuppNE.

Exploitation of Zero Sum Games

Main Idea: Fix arbitrary (normalized) game $\langle A, B \rangle$.

- The row (column) player would never accept a profit less than the one assured by maximin plays in $\langle A, -A \rangle$ (resp. $\langle -B, B \rangle$).
- What if the row player mimics the behavior of a player closer to the opponent of the column player?
- Find the proper zero sum game to solve, and compare the values of its solution in the real game.

A Simple Observation

We prove that:

Lemma

Fix arbitrary (normalized) [0, 1]-bimatrix game $\langle A, B \rangle$ and any real matrices $R, C \in \mathbb{R}^{m \times n}$, such that $\forall i \in [m], R^i = \mathbf{r}^T \in \mathbb{R}^n$ and $\forall j \in [n], C_j = \mathbf{c} \in \mathbb{R}^m$. Then, $\forall 1 > \varepsilon > 0$ and any profile (\mathbf{x}, \mathbf{y}) , if (\mathbf{x}, \mathbf{y}) is an ε -SuppNE for $\langle A, B \rangle$ then it is also an ε -SuppNE for $\langle A + R, B + C \rangle$.

...which leads to the (folklore for exact NE) observation:

Corollary

SuppNE are immune to shifting operations of the payoff matrices.

that we shall use.

P. Spirakis (spirakis@cti.gr)

An LP Based Construction of SuppNE

Application to Win Lose Games (I)

- Rather than working with {0,1}-bimatrix games, work with $\left\{-\frac{1}{2},\frac{1}{2}\right\}$ -bimatrix games $\langle A,B\rangle$.
- Let Z = -(A + B).
- Consider the (maximin) solution $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ of the zero sum game $\langle A+\frac{1}{2}Z,-(A+\frac{1}{2}Z)\rangle$.

Theorem

 $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ is a (polynomial time computable) 0.5–SuppNE for $\langle A, B \rangle$.

Application to Win Lose Games (II)

WHY?

- Exclude (1, 1)-elements (trivial PNE) from (A, B).
- Shift (A, B) to take $(R = A \frac{1}{2}E, C = -\frac{1}{2}E)$.
- Consider the zero sum game $\langle D, -D \rangle$, s.t. $D = R + X \Leftrightarrow X = D - R$ and $-D = C + Y \Leftrightarrow Y = -(D + C)$ for arbitrary $m \times n$ bimatrix (X, Y).

 $\begin{aligned} (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \mathsf{NE}(D, -D) &= \mathsf{NE}(R + X, C + Y) \Leftrightarrow \\ \Leftrightarrow & \begin{cases} \forall i, r \in [m], \quad \bar{x}_i > 0 \Rightarrow R^i \bar{\mathbf{y}} \ge R^r \bar{\mathbf{y}} - [X^i - X^r] \bar{\mathbf{y}} \\ \forall j, s \in [n], \quad \bar{y}_j > 0 \Rightarrow C_j^T \bar{\mathbf{x}} \ge C_s^T \bar{\mathbf{x}} - [Y_j - Y_s]^T \bar{\mathbf{x}} \end{cases} \end{aligned}$

Application to Win Lose Games (III)

WHY? (contd.)

• Since $-Z \equiv R + C = -(X + Y)$, try $X = Y = \frac{1}{2}Z$:

$$\begin{aligned} & (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \mathsf{NE}(D, -D) \\ \Leftrightarrow & \begin{cases} \forall i, r \in [m], \quad \bar{x}_i > 0 \Rightarrow \mathsf{R}^i \bar{\mathbf{y}} \ge \mathsf{R}^r \bar{\mathbf{y}} - \frac{1}{2} \cdot [Z^i - Z^r] \bar{\mathbf{y}} \\ \forall j, s \in [n], \quad \bar{y}_j > 0 \Rightarrow C_j^T \bar{\mathbf{x}} \ge C_s^T \bar{\mathbf{x}} - \frac{1}{2} \cdot [Z_j - Z_s]^T \bar{\mathbf{x}} \end{aligned}$$

- Any row or column of Z is a $\{0, 1\}$ -vector.
- \Rightarrow ($\bar{\mathbf{x}}, \bar{\mathbf{y}}$) is a 0.5–SuppNE of $\langle R, C \rangle$, and thus also for $\langle A, B \rangle$.

Extension to Normalized Games (I)

Corollary

Any normalized bimatrix game has a polynomial time computable 0.75–SuppNE.

- WHY? A simple application of the reduction of {Daskalakis,Mehta,Papadimitriou, 2006}.
- Question: Can we do better?
- Answer: Yes, if we parameterize our analysis for win lose games.

Extension to Normalized Games (I)

Corollary

Any normalized bimatrix game has a polynomial time computable 0.75–SuppNE.

- WHY? A simple application of the reduction of {Daskalakis,Mehta,Papadimitriou, 2006}.
- Question: Can we do better?
- Answer: Yes, if we parameterize our analysis for win lose games.

Extension to Normalized Games (II)

Theorem

For any win lose bimatrix game $\langle R, C \rangle$ and any $0 < \delta < 1$, the exact NE $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ of $\langle R + \delta Z, -(R + \delta Z) \rangle$ is an $\varepsilon(\delta)$ -SuppNE, where:

$$\begin{aligned} \varepsilon(\delta) &\equiv \max_{i,r\in[m],j,s\in[n],\mathbf{x},\mathbf{y}} \left\{ \delta \cdot \left[Z^{i} - Z^{r} \right] \mathbf{y}, \frac{1-\delta}{\delta} \cdot \left[R_{s}^{T} - R_{j}^{T} \right] \mathbf{x} \right\} \\ &\leq \max\left\{ \delta, \frac{1-\delta}{\delta} \right\} \end{aligned}$$

WHY?

• Same reasoning as in previous case.

• NOTE: Not so tight analysis as before!!!

P. Spirakis (spirakis@cti.gr)

SuppNE in Bimatrix Games

March 2007 26 / 32

Extension to Normalized Games (II)

Theorem

For any win lose bimatrix game $\langle R, C \rangle$ and any $0 < \delta < 1$, the exact NE $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ of $\langle R + \delta Z, -(R + \delta Z) \rangle$ is an $\varepsilon(\delta)$ -SuppNE, where:

$$\begin{aligned} \varepsilon(\delta) &\equiv \max_{i,r\in[m],j,s\in[n],\mathbf{x},\mathbf{y}} \left\{ \delta \cdot \left[Z^{i} - Z^{r} \right] \mathbf{y}, \frac{1-\delta}{\delta} \cdot \left[R_{s}^{T} - R_{j}^{T} \right] \mathbf{x} \right\} \\ &\leq \max\left\{ \delta, \frac{1-\delta}{\delta} \right\} \end{aligned}$$

WHY?

- Same reasoning as in previous case.
- NOTE: Not so tight analysis as before!!!

P. Spirakis (spirakis@cti.gr)

Extension to Normalized Games (III)

Theorem

For any normalized bimatrix game there is a polynomial time computable $(\sqrt{11}/2 - 1)$ -SuppNE.

WHY?

- Shift $\langle A, B \rangle$ to the $[-\frac{1}{2}, \frac{1}{2}]$ -bimatrix game $\langle R, C \rangle$.
- Let Z = -(R + C) and $0 < \delta < 1$.
- Any element $(R, C)_{i,j} \in [\frac{1}{2} \zeta, \frac{1}{2}] \times [\frac{1}{2} \zeta, \frac{1}{2}]$ would indicate a ζ -SuppNE of the game.
- $\Rightarrow \text{ Each element of } \langle R, C \rangle \text{ has } R_{ij} < \frac{1}{2} \zeta \lor C_{ij} < \frac{1}{2} \zeta.$
- $\Rightarrow Z \in (-1+\zeta, 1]^{m \times n}$
- Any NE of $\langle R + \delta Z, -(R + \delta Z) \rangle$ is an $\varepsilon(\delta)$ -SuppNE of $\langle R, C \rangle$.
- Fine Tuning: For $\zeta^* = \frac{\sqrt{11}}{2} 1$ we get a ζ -SuppNE for $\langle R, C \rangle$.

An LP Based Construction of SuppNE

Extension to Normalized Games (III)

Theorem

For any normalized bimatrix game there is a polynomial time computable $(\sqrt{11}/2 - 1)$ -SuppNE.

WHY?

- Shift $\langle A, B \rangle$ to the $\left[-\frac{1}{2}, \frac{1}{2}\right]$ -bimatrix game $\langle R, C \rangle$.
- Let Z = -(R + C) and $0 < \delta < 1$.
- Any element $(R, C)_{i,i} \in [\frac{1}{2} \zeta, \frac{1}{2}] \times [\frac{1}{2} \zeta, \frac{1}{2}]$ would indicate a ζ -SuppNE of the game.
- \Rightarrow Each element of $\langle R, C \rangle$ has $R_{ii} < \frac{1}{2} \zeta \lor C_{ii} < \frac{1}{2} \zeta$.
- $\Rightarrow Z \in (-1+\zeta, 1]^{m \times n}$.
 - Any NE of $\langle R + \delta Z, -(R + \delta Z) \rangle$ is an $\varepsilon(\delta)$ -SuppNE of $\langle R, C \rangle$.
 - Fine Tuning: For $\zeta^* = \frac{\sqrt{11}}{2} 1$ we get a ζ -SuppNE for $\langle R, C \rangle$.

Random Bimatrix Games

Random normalized games:

- The entries of the bimatrix are independent (not necessarily identically distributed) random variables.
- The sums of the elements of each row of A are sharply concentrated around the same value.
- The sums of the elements of each column of *B* are sharply concentrated around the same value.
- \Rightarrow The uniform full mix is $O\left(\sqrt{\frac{\log m}{m}}\right)$ –SuppNE of $\langle A, B \rangle$, whp.

Random Win Lose Games:

 All the probability mass is split among elements of {(0,0), (0,1), (1,0)}. All these elements have positive probability.

⇒ There is either a PNE, or a polynomial time constructible $\frac{1}{2}$ -SuppNE, **whp**.

P. Spirakis (spirakis@cti.gr)

Skeleton

Well Supported Approximate Nash Equilibria in Bimatrix Games

Introduction

- Bimatrix Games Notation
- Approximations of Nash Equilibria
- Recent Advances in Approximations of NE

Existence and Construction of non-trivial SuppNE
 A Subexponential Scheme for SuppNE
 A Graph Theoretic Construction of SuppNE
 An LP Based Construction of SuppNE
 SuppNE in Random Games

3 Recap and Open Problems

What We Have Seen

	Graph Tl	neoretic	LP Based	Random
Win Lose	1-2/	g	<u>.</u>	∃ PNE OR 2-MP, (whp)
	λ-sparse with large girth	$O(\lambda/g)=o(1)$	0.5	
Normalized	1-1,	/g		Uniform Full Mix is
	λ-sparse win lose image with large girth	$\frac{1+o(1)}{2}$	$\frac{\sqrt{11}}{2} - 1$	$\sqrt{\frac{\log m}{m}}$ -SuppNE

Open Issues

Is there a PTAS for ApproxNE?

• Is there a polynomial time algorithm for ε -SuppNE, for some constant $\frac{\sqrt{11}}{2} - 1 > \varepsilon > 0$?

• Is there a PTAS for SuppNE?

 What is the relation of *PPAD* with other complexity classes (eg, *PLS*)?

P. Spirakis (spirakis@cti.gr)

Thank you for your attention!

P. Spirakis (spirakis@cti.gr)

SuppNE in Bimatrix Games

March 2007 32 / 32