Approximability of Pricing Problems

Piotr Krysta

joint work with Patrick Briest

Department of Computer Science University of Liverpool U.K.

28-03-2007

- 4 同 6 4 日 6 4 日 6

Multi-Product Pricing Problems

- Websites comparing available products help customers make optimal buying decisions.
- Customers reveal their preferences and budgets.

My ▲ ▶ ⓓ ℭ ⊜ + ♥ http:/	Product Adv /www.mypro	isor ductadvi	sor.com	/mp:🜍 - 🤆	₹ Google	
My Product Advisor			-			
My Product Ac	IVISOT.cc New Aut	om os	About M	PA Privacy P	olicy EAQs	Tel.
My Product Advisor Home Page	New Aut	os Digit	al Camera	as Cell Phor	les Noteb	ooks
My Auto Usage My Basic Au	c Auto Preferences			Refine Preferences		
Auto Price Brands	Body Type	Basic Preferenc		Other Attributes	What's Important	
Usage I plan on using my new vehicle for:				Cancel	Submit	3
	Least Important			Most Important		
Commuting to and from work or school	—					
Car pooling or transporting children	V	11	0	w.		
Running household errands / shopping	—					
)	4 14

Multi-Product Pricing Problems

- Websites comparing available products help customers make optimal buying decisions.
- Customers reveal their preferences and budgets.

My My My My Product Advisor	Product Advisor /www.myproductadvisor.	com/mp: 📀 ^ 🔍 - Googl	e
My Product Ac	New Autos Digital Ca	ut MPA Privacy Policy FAG	books (
My Auto Usage My Basic Au Auto Usage Price Brands	b Preferences Body Type Preferences	Refine Preference Other Attributes	s
Usage I plan on using my new vehicle for:		Cancel Submi	D
Commuting to and from work or school	Least Important	Most Importan	t
Car pooling or transporting children			
Running household errands / shopping	9		

Goal: use available data to compute profit maximmizing prices for a company's product range.

Different approaches taken to model markets. Here:

- Single-Minded Unlimited-Supply Pricing:
 - *single-minded* customers, each interested in a single set of products,
 - *unlimited supply*, i.e., no production constraints.
 - Customer buys if the sum of prices is below her budget.
- Unit-Demand Pricing:
 - *unit-demand* customers, each buy a single product in a set of products,
 - unlimited or limited supply,
 - Customer buys only products with prices below their budgets.

 $\mathsf{Example} \longrightarrow \mathsf{Single-Minded} \ \mathsf{Pricing:}$

 $\mathsf{Example} \longrightarrow \mathsf{Single-Minded} \ \mathsf{Pricing:}$

Piotr Krysta

Approximability of Pricing Problems

$\mathsf{Example} \longrightarrow \mathsf{Unit-Demand} \ \mathsf{Pricing}:$

Piotr Krysta Approximability of Pricing Problems

Example \longrightarrow Unit-Demand Pricing:

Piotr Krysta

Approximability of Pricing Problems

1 Introduction

2 Single-Minded Unlimited-Supply Pricing

- Hardness Results
- Approximation Algorithms

O Unit-Demand Pricing

- Hardness Results
- Approximation Algorithms

Hardness Results Approximation Algorithms

Single-Minded Unlimited-Supply Pricing [Briest, Krysta, SODA '06]

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Single-Minded Unlimited-Supply Pricing (SUSP)

Given products \mathcal{U} and sets \mathcal{S} with values v(S) find prices p, such that

$$\sum_{S:\sum_{e\in S} p(e) \le v(S)} \sum_{e\in S} p(e) \longrightarrow \max$$

 \rightsquigarrow models pricing of direct connections in computer or transportation networks.

Pricing in Graphs(G-SUSP)

Given graph G = (V, E) and paths \mathcal{P} , assign profit-maximizing prices p to edges.

First investigated by *Guruswami et al. (2005)*. Recent inapproximability result due to *Demaine et al. (2006)*.

In general:

- $O(\log |\mathcal{U}| + \log |\mathcal{S}|)$ -approximation
- inapproximable within $O(\log^{\delta} |\mathcal{U}|)$ for some $0 < \delta < 1$

With G being a line (Highway Problem):

- poly-time algo for integral valuations of constant size
- pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem?

First investigated by *Guruswami et al. (2005)*. Recent inapproximability result due to *Demaine et al. (2006)*.

In general:

- $O(\log |\mathcal{U}| + \log |\mathcal{S}|)$ -approximation
- inapproximable within $O(\log^{\delta} |\mathcal{U}|)$ for some $0 < \delta < 1$

With G being a line (Highway Problem):

- poly-time algo for integral valuations of constant size
- pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem? No!

Hardness Results Approximation Algorithms

Hardness Results

Piotr Krysta Approximability of Pricing Problems

イロン イロン イヨン イヨン

Hardness Results Approximation Algorithms

The Highway Problem

Piotr Krysta Approximability of Pricing Problems

<ロ> <同> <同> < 回> < 回>

Theorem

The Highway Problem is NP-hard.

Sketch of Proof: PARTITION problem:

Given positive weights w_1, \ldots, w_n , does there exist $S \subset \{1, \ldots, n\}$, such that

$$\sum_{j\in S} w_j = \sum_{j\notin S} w_j ?$$

Design gadgets that capture the discrete nature of this problem.

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Weight Gadgets

Maximum profit out of W_j is $2w_j$. It is obtained iff $p(W_j) = p(e_1^j) + p(e_2^j)$ is set to w_j or $2w_j$.

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Maximum profit $\frac{7}{2} \sum_{j=1}^{n} w_j$ is obtained iff there exists $S \subset \{1, \ldots, n\}$ with $\sum_{j \in S} w_j = \sum_{j \notin S} w_j$. \Box

Hardness Results Approximation Algorithms

G-SUSP Inapproximability of Sparse Problem Instances

з

(日) (同) (三) (三)

APX-hardness of G-SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparse problem instances. Hardness of approximation still holds if:

- G has constant degree d
- paths have constant lengths $\leq \ell$
- at most a constant number *B* of paths per edge
- only constant height valuations

Theorem

G-SUSP on sparse instances is APX-hard.

Hardness Results Approximation Algorithms

Approximation Algorithms

з

(日) (同) (三) (三)

Best ratio in the general case: $\log |\mathcal{U}| + \log |\mathcal{S}|$ Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry (2005)

Not approximable within $\log^{\delta} |\mathcal{U}|$ for some $0 < \delta < 1$. Demaine, Feige, Hajiaghayi, Salavatipour (2006)

Can we do better on sparse problem instances, i.e., can we obtain approximation ratios depending on

- ℓ , the maximum cardinality of any set $\mathcal{S}\in\mathcal{S}$
- *B*, the maximum number of sets containing some product $e \in \mathcal{U}$

rather than $|\mathcal{U}|$ and $|\mathcal{S}|?$

Hardness Results Approximation Algorithms

An $O(\log \ell + \log B)$ -Approximation

2

イロト 不同 とうほう 不同 とう

Hardness Results Approximation Algorithms

Let $\delta(S) = v(S)/|S|$ be price per product of set S.

• Round all $\delta(S)$ to powers of 2. Let $S = S_0 \cup \ldots \cup S_t$ where $t = \lceil \log \ell^2 B \rceil - 1$. In S_i : $\delta(S) > \delta(T) \Rightarrow \delta(S) / \delta(T) \ge \ell^2 B$.

2 In each S_i select non-intersecting sets with maximum δ -value and compute optimal prices.

< 6 >

Analysis:

- $Opt(S) \leq \sum_{i=1}^{t} Opt(S_i)$
- Let $S \in S_i$, $\mathcal{I}(S)$ intersecting sets with smaller δ -values:

$$v(S) \geq \sum_{T \in \mathcal{I}(S)} v(T)$$

• Let \mathcal{S}_i^* be non-intersecting sets with max. δ as in the algo. Then

$$Opt(\mathcal{S}_i) \leq 2 \cdot Opt(\mathcal{S}_i^*),$$

and, since we compute $\max_i Opt(\mathcal{S}_i^*)$:

Theorem

The above algorithm has approximation ratio $O(\log \ell + \log B)$.

• □ > • □ > • □ > • □ > •

Upper bounding technique

We relate $Opt(\mathcal{S}_i^*)$ to $Opt(\mathcal{S}_i)$ by using as an upper bound

$$Opt(\mathcal{S}_i) \leq \sum_{S \in \mathcal{S}_i} v(S),$$

i.e., the sum of all valuations.

Using this upper bounding technique, no approximation ratio $o(\log B)$ can be achieved.

In many applications: $B >> \ell$.

Can we obtain ratios independent of B?

Hardness Results Approximation Algorithms

An $O(\ell^2)$ -Approximation

・ロン ・回 と ・ ヨ と ・ ヨ と …

Hardness Results Approximation Algorithms

Define (smoothed) s-SUSP by changing the objective to

where $\Lambda(p) = \{ S \in S \mid p(e) \le \delta(S) \, \forall \, e \in S \}.$

We derive an $O(\ell)$ -approximation for s-SUSP.

- For every e ∈ U compute the optimal price p*(e) assuming all other prices were 0.
- **2** Resolve existing *conflicts*.

Set S is conflicting, if

$$\exists e, f \in S : p^*(e) \leq \delta(S) < p^*(f).$$

Upper bounding technique

- For every e ∈ U compute the optimal price p*(e) assuming all other prices were 0.
- **2** Our upper bound: $Opt \leq \sum_{e \in \mathcal{U}} p^*(e)$

Summary (SUSP):

- Hardness results
 - NP-hardness of the Highway Problem
 - APX-hardness of G-SUSP for sparse instances
- Approximation Algorithms
 - $O(\log \ell + \log B)$ -approximation (\rightsquigarrow partitioning)
 - $O(\ell^2)$ -approximation (\rightsquigarrow conflict graph)

A ₽

Hardness Results Approximation Algorithms

Unit-Demand Pricing [Briest, Krysta, SODA '07]

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Unit-Demand Pricing (UDP)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c, e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}.$

Hardness Results Approximation Algorithms

Unit-Demand Pricing (UDP)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c, e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}.$

For prices $p : \mathcal{U} \to \mathbb{R}_0^+$: $\mathcal{A}(p) = \{c \in \mathcal{C} \mid \exists e \in \mathcal{U} : p(e) \leq b(c, e)\} = \text{consumers affording to buy any product.}$

Unit-Demand Pricing (UDP)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c, e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}.$

For prices $p : \mathcal{U} \to \mathbb{R}_0^+$: $\mathcal{A}(p) = \{c \in \mathcal{C} \mid \exists e \in \mathcal{U} : p(e) \leq b(c, e)\} = \text{consumers affording to buy any product.}$

In no price ladder scenario (NPL) we find prices p that maximize:

• $\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)

Unit-Demand Pricing (UDP)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c, e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}.$

For prices $p : \mathcal{U} \to \mathbb{R}_0^+$: $\mathcal{A}(p) = \{c \in \mathcal{C} \mid \exists e \in \mathcal{U} : p(e) \leq b(c, e)\} = \text{consumers affording to buy any product.}$

In no price ladder scenario (NPL) we find prices p that maximize:

- $\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)
- $\sum_{c \in \mathcal{A}(p)} \max\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MAX-NPL)

Unit-Demand Pricing (UDP)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c, e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}.$

For prices $p : \mathcal{U} \to \mathbb{R}_0^+$: $\mathcal{A}(p) = \{c \in \mathcal{C} \mid \exists e \in \mathcal{U} : p(e) \leq b(c, e)\} = \text{consumers affording to buy any product.}$

In no price ladder scenario (NPL) we find prices p that maximize:

- $\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)
- $\sum_{c \in \mathcal{A}(p)} \max\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MAX-NPL)

Given a price ladder constraint (PL), $p(e_1) \leq \cdots \leq p(e_{|\mathcal{U}|})$, UDP-{MIN,MAX}-PL asks for prices p satisfying PL.

Hardness Results Approximation Algorithms

$\mathsf{Example} \longrightarrow \mathsf{UDP}\text{-}\mathsf{MIN}\text{-}\mathsf{PL}\text{:}$

UDP-MIN-{PL,NPL}:

- $\bullet~{\rm UDP}\mbox{-}{\rm Min}\mbox{-}{\rm PL}$ poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ?

< □ > < □ >

UDP-MIN-{PL,NPL}:

- $\bullet~{\rm UDP}\mbox{-}{\rm Min}\mbox{-}{\rm PL}$ poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].

Q: UDP-MIN-NPL: Is there a const approx ? No!

Image: A image: A

UDP-MIN-{PL,NPL}:

- $\bullet~{\rm UDP}\mbox{-}{\rm Min}\mbox{-}{\rm PL}$ poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ?

A A B

UDP-MIN-{PL,NPL}:

- $\bullet~{\rm UDP}\mbox{-}{\rm Min}\mbox{-}{\rm PL}$ poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ? Yes!

< 4 P → 4 F

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ? Yes! UDP-MAX-NPL, limit'd supply: const-approx, APX-hard ?

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{Pl,Npl}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ? Yes! UDP-MAX-NPL, limit'd supply: const-approx, APX-hard ? Yes!

Hardness Results Approximation Algorithms

Hardness Results

Piotr Krysta Approximability of Pricing Problems

イロン イロン イヨン イヨン

Hardness Results Approximation Algorithms

$\mathrm{UDP}\text{-}\mathrm{MIN}\text{-}\mathrm{NPL}\text{:}$ is there a const approx ? No!

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Recall: UDP-MIN-NPL has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2]. We prove:

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Recall: UDP-MIN-NPL has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2]. We prove:

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Sketch of Proof: Let $\alpha(G)$ = size of the maximum independent set in graph G.

イロト イポト イヨト イヨト

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

・ロト ・同ト ・ヨト ・ヨト

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Sketch of Proof:

Let $\alpha(G)$ = size of the maximum independent set in graph G.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in G$, we reduce finding $\alpha(G)$ to UDP-MIN-PL.

・ロト ・同ト ・ヨト ・ヨト

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Sketch of Proof:

Let $\alpha(G)$ = size of the maximum independent set in graph G.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in \mathcal{G}$, we reduce finding $\alpha(G)$ to UDP-MIN-PL. Assume *a.c.*: UDP-MIN-PL has $\mathcal{O}(\log^{\varepsilon-\delta} |\mathcal{C}|)$ -approx for some $\delta > 0$.

・ロト ・同ト ・ヨト ・ヨト

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Sketch of Proof:

Let $\alpha(G)$ = size of the maximum independent set in graph G.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in \mathcal{G}$, we reduce finding $\alpha(G)$ to UDP-MIN-PL. Assume *a.c.*: UDP-MIN-PL has $\mathcal{O}(\log^{\varepsilon-\delta} |\mathcal{C}|)$ -approx for some $\delta > 0$. We will show that this gives $\mathcal{O}(\log^{\varepsilon} n)$ -approx for $\alpha(G)$ in time $n^{\mathcal{O}(\log \log n)}$.

Hardness Results Approximation Algorithms

Sketch of Proof:

Independent Set Problem (Is)

Given undirected graph G = (V, E), |V| = n, |E| = m, find maximum cardinality subset $V' \subseteq V$ with $\{v, w\} \notin E$ for any $v, w \in V'$.

(日)

Sketch of Proof:

Independent Set Problem (Is)

Given undirected graph G = (V, E), |V| = n, |E| = m, find maximum cardinality subset $V' \subseteq V$ with $\{v, w\} \notin E$ for any $v, w \in V'$.

Many hardness results, among others hard to approximate within

•
$$\mathcal{O}(n^{\varepsilon})$$

• $\mathcal{O}(\Delta^{\varepsilon})$ in graphs of maximum degree Δ

for some $\varepsilon > 0$, unless P=NP.

- 4 同 2 4 日 2 4 日

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

A ₽

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

$$G = (V, E), V = \{v_1, \dots, v_n\}$$
$$\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$$
$$\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

A ₽

Hardness Results Approximation Algorithms

Sketch of Proof:

Independence via geometrically increasing threshold prices:

 $G = (V, E), V = \{v_1, \dots, v_n\}$ $\mathcal{P} = \{e_1, \dots, e_n\}, \mu_j = 1/n^{n-j}$ $\mathcal{V}_j = \{v_j\} \cup \{v_i | \{v_i, v_j\} \in E, i < j\}$

 $v_j \rightsquigarrow n^{n-j}$ consumers C_j with budgets μ_i for all $i \in \mathcal{V}_j$, 0 else

 $rev(\mathcal{C}_j) = 1 \Rightarrow rev(\mathcal{C}_i) \le 1/n$ for all *i* with $v_i \in \mathcal{V}_j$ or $v_j \in \mathcal{V}_i$

Gadgets allow to encode independence. But graphs of size n result in instances of size $\Omega(n^n)$.

Sketch of Proof:

Way out: Trade some hardness for sparser problem instances.

Theorem

IS in graphs on *n* vertices with maximum degree $\Delta(n) = \mathcal{O}(\log n)$ is not approximable within $\mathcal{O}(\log^{\varepsilon} n)$ for some $\varepsilon > 0$, unless P=NP.

< A ▶

Sketch of Proof:

Way out: Trade some hardness for sparser problem instances.

Theorem

IS in graphs on *n* vertices with maximum degree $\Delta(n) = \mathcal{O}(\log n)$ is not approximable within $\mathcal{O}(\log^{\varepsilon} n)$ for some $\varepsilon > 0$, unless P=NP.

These graphs are just what we need, because...

Graphs of maximum degree Δ are $(\Delta + 1)$ -colorable.

...and vertices of one color can be realized on one price level.

Hardness Results Approximation Algorithms

Sketch of Proof:

・ロト ・回ト ・ヨト ・ヨト

Hardness Results Approximation Algorithms

Sketch of Proof:

Theorem

The UDP-MIN-{PL,NPL} problem is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME $(n^{\mathcal{O}(\log \log n)})$.

Hardness Results Approximation Algorithms

Approximation Algorithms

Piotr Krysta Approximability of Pricing Problems

2

<ロト <部ト < 注ト < 注ト

Hardness Results Approximation Algorithms

$\begin{array}{c} \mathrm{UDP-Max-NPL, \ limit'd \ supply: \ const-approx, \\ APX-hard ? \ Yes!} \end{array}$

Piotr Krysta Approximability of Pricing Problems

(日) (同) (三) (三)

Hardness Results Approximation Algorithms

Theorem

 $\rm UDP\text{-}MAX\text{-}NPL$ with supply 1 in P, with limited supply \leq 2 is APX-hard.

Theorem

There is a 2-approximation algorithm for $\mathrm{UDP}\text{-}\mathrm{MAX}\text{-}\mathrm{NPL}$ with limited supply.

Sketch of Proof:

The following is a 2-approximation algorithm:

LocalSearch: Initialize p arbitrarily and compute opt allocation under p. While there exists product e and price $p' \neq p(e)$ s.t. new opt allocation is better, set p(e) = p'.

Summary (UDP):

- $\rm UDP-MIN-\{PL,NPL\}$ is intractable (no const approx), even with PL
- UDP-MAX-{PL,NPL} is tractable (const approx), even with NPL and limited supply

- 4 同 6 4 日 6 4 日 6