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Co-operative Game with Transferable
Utility

A co-operative game with transferable
utility is a set of agents, N , and a function, v,
from 2N → <.

v asociates a real number for any coalition S.

v(S) is called the value of S.
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Imputation

An imputation is a x ∈ <|N | such that

For all i ∈ N, xi ≥ v(i) and

∑
i∈N

xi = v(N).

The set of imputations is denoted I(v, N).
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Solution Concept

A solution concept is a rule that associates
with each (v, N) a subset of I(v, N).
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Stable Set

The very first solution concept for co-operative
games, proposed by von Neumann and Mor-
gentsern (1944), was called the stable set.

Lucas (1968) showed a co-operative game need
not posess a stable set.

Question: Characterize which games have a
stable set. Not known to be decidable even.

Subsequent work by others showed that a stable
set could be quite complicated.
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Core

Attention shifted to other solution concepts. The
most important of these has been the core in-
troduced by Gillies (1957).

Question: When is core stable? (i.e., when is
the core a stable set too).

We provide a little bit of insight on this question.
We observe that the question is decidable.
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Notation

Given a vector x ∈ <|N |, we write ∑
i∈S xi for

any S ⊆ N as x(S).

For any S ⊆ N define C(v, S) to be:

{x ∈ <|S| : x(S) = v(S), x(T ) ≥ v(T ) ∀T ⊂ S}.

C(v, N) is called the core of the game (v, N).
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Balanced Game

A game (v, N) is balanced if and only if

v(N) ≥ max
∑

T⊂N
λTv(T )

st
∑

T3i
λT = 1 ∀i ∈ N

λT ≥ 0 ∀T ⊂ N.

From LP duality a game is balanced iff it has a
non-empty core.
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Totally Balanced

A game is totally balanced if every subgame
(v, S) is balanced.

From LP duality a game is totally balanced iff
every subgame (v, S) has a non-empty core.
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Strongly Totally Balanced

A game is Strongly totally balanced if C(v, S)
has non-empty relative interior, for every |S| ≥
2.

From any totally balanced game if we subtract
any ε > 0, from every v(S) we get a strongly
totally balanced game.

10



Stable Core

The core, C(v, N) of a balanced game is stable

if for all y ∈ I(v, N) \ C(v, N)

there is an x ∈ C(v, N) and T ⊂ N

such that x(T ) = v(T ) and xi > yi for all
i ∈ T .

In this case x is said to dominate y via T .
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Exact Games

A balanced game (v, N) is exact

if for all T ⊂ N

there is an x ∈ C(v, N)

such that x(T ) = v(T ).

Exact games are totally balanced. Converse
does not hold.
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Supermodular games

A game is supermodular if any person adds more
value to a larger coalition.

Take any agent i. Take two sets S and T not
containing i. S ⊆ T .

v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S)

Supermodular games have stable core. Super-
modular game are also exact. None of the con-
verses hold.
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Games with Large Core

The core, C(v, N) is called large

if for every y ∈ <|N | such that y(S) ≥ v(S) for
all S ⊆ N

there is an x ∈ C(v, N) such that x ≤ y.

Supermodular ⇒ Large ⇒ Stable, Exact.

Reverse directions do not hold.
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Games with Extendible Core

Extendability means that for each S ⊂ N
and z ∈ C(v, S)

there is an x ∈ C(v, N)

such that xi = zi for all i ∈ S.

Supermodular ⇒ Large ⇒ Extendible ⇒ Sta-
ble, Exact.

Reverse directions do not hold.
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Possibilities

Supermodular ⇒ Large ⇒ Extendible ⇒ Ex-
act ⇒ Stable.

Supermodular ⇒ Large ⇒ Extendible ⇒ Sta-
ble ⇒ Exact.

Both (proposed by Vohra)

None.

We do not resolve this question.
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What we asked

Why the healthy sequence of finding weaker and
weaker properties which imply stablity did not
continue? Certainly there is a scope since the
last converse does not hold. So we asked to find
a property XYZ such that

Supermodular ⇒ Large ⇒ Extendible ⇒ XYZ
⇒ Stable.

or even

XYZ ⇒ Stable.
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What we found

It is a hard question. Finding such an XYZ will
shed a non-trivial light on stability.
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Violated Set

Given a y ∈ I(v, N) \ C(v, N).

Call a set T such that y(T ) < v(T ) a violated
set.
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Strongly Stable Core

The core, C(v, N) of a balanced game is strongly
stable

if for all y ∈ I(v, N) \ C(v, N) and for any
minimally violated set T ,

there is an x ∈ C(v, N)

such that x(T ) = v(T ) and xi > yi for all
i ∈ T .
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We answered our question :-)

Strongly Stable ⇒ Stable.

In fact,

Supermodular⇒ Large⇒ Extendible⇒ Strongly
Stable ⇒ Stable.
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But not staisfactorily

Strongly Stable ⇒ Extendible

The implication holds under Strongly Total Bal-
ancedness condition. There is an example which
show that Strongly in Total Balancedness is
required.
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The message

Definition of Stability:

The core, C(v, N) of a balanced game is stable

if for all y ∈ I(v, N) \ C(v, N)

there is an x ∈ C(v, N) and T ⊂ N

such that x(T ) = v(T ) and xi > yi for all
i ∈ T .

In this case x is said to dominate y via T .

The choice of T is the main non-trivial task.
Once this choice is made then everything is a
skillful use of Farkas Lemma at some high level.
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Decidability of Stable Core

Define PT as the set of vectors y in I(v, N) \
C(v, N), which can use an x ∈ C(v, N) to dom-
inate y via T .

Check whether I(v, N) \ C(v, N) is a union of
PT ’s for all T ⊂ N and |T | ≥ 2.
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