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Overview

1.=⇒ Review unlimited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

2. Generalize to limited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

3. Generality & conclusions.
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Example: Path Pricing

Example: Edge pricing selling paths.

v1

v2

v3 v4

v5

v6

Consumer 1 wants path from v1 to v2 for $5.
Consumer 2 wants path from v2 to v3 for $3.

...
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Example: Path Pricing

Example: Edge pricing selling paths.
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Example: Path Pricing

Example: Edge pricing selling paths.

v1

v2

v3 v4

v5

v6

$2

$2
$3

$2

$1

Consumer 1 wants path from v1 to v2 for $5. (pays $4)
Consumer 2 wants path from v2 to v3 for $3.

...
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Example: Path Pricing

Example: Edge pricing selling paths.

v1

v2

v3 v4

v5

v6

$2

$2
$3

$2

$1

Consumer 1 wants path from v1 to v2 for $5. (pays $4)
Consumer 2 wants path from v2 to v3 for $3. (not served)

...
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Example: Path Pricing

Example: Edge pricing selling paths.

v1

v2

v3 v4

v5

v6

$2

$2
$3

$2

$1

Consumer 1 wants path from v1 to v2 for $5. (pays $4)
Consumer 2 wants path from v2 to v3 for $3. (not served)

...
Goal: price edges to maximize objective.
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Unlimited Supply Algorithmic Pricing

The Unlimited Supply Algorithmic Pricing problem:

Given:

• unlimited supply of stuff.

• Set S of n consumers and their preferences for stuff.

• class G of reasonable offers.

Design: Algorithm to compute optimal offer from G.
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Unlimited Supply Algorithmic Pricing

The Unlimited Supply Algorithmic Pricing problem:

Given:

• unlimited supply of stuff.
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• class G of reasonable offers.

Design: Algorithm to compute optimal offer from G.
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Notation:
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Unlimited Supply Algorithmic Pricing

The Unlimited Supply Algorithmic Pricing problem:

Given:

• unlimited supply of stuff.

• Set S of n consumers and their preferences for stuff.

• class G of reasonable offers.

Design: Algorithm to compute optimal offer from G.

Notation:

• p(i, g) = payoff from consumer i when offered g ∈ G.

• p(S, g) =
∑

i∈S p(i, g).

• optG(S) = argmaxg∈G p(S, g).

• OPT = OPTG(S) = maxg∈G p(S, g)..
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Example: Digital Good

Example: digital good

• Single item for sale (unlimited supply).

• Consumers have valuations for single copy of item, (v1, . . . , vn).

• Consumers are indistinguishable.

OPTIMAL AUCTIONS – MARCH 28, 2007
5



Example: Digital Good

Example: digital good

• Single item for sale (unlimited supply).

• Consumers have valuations for single copy of item, (v1, . . . , vn).

• Consumers are indistinguishable.

• G = set of all prices, i.e., gq = “take-it-or-leave-it at price q”.
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Example: Digital Good

Example: digital good

• Single item for sale (unlimited supply).

• Consumers have valuations for single copy of item, (v1, . . . , vn).

• Consumers are indistinguishable.

• G = set of all prices, i.e., gq = “take-it-or-leave-it at price q”.

• p(i, gq) =

{

q if q ≤ vi

0 o.w.
.
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Example: Digital Good

Example: digital good

• Single item for sale (unlimited supply).
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Example: Digital Good

Example: digital good

• Single item for sale (unlimited supply).

• Consumers have valuations for single copy of item, (v1, . . . , vn).

• Consumers are indistinguishable.

• G = set of all prices, i.e., gq = “take-it-or-leave-it at price q”.

• p(i, gq) =

{

q if q ≤ vi

0 o.w.
.

How can we compute optG?

1. Sort valuations: v1 ≥ . . . ≥ vn

2. Output vi to maximize i × vi.
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Literature

Algorithmic Pricing in the Literature

• unlimited supply (mostly).

• many interesting special cases.

• includes work of: Gagan Aggarwal, Maria-Florina Balcan, Avrim
Blum, Patrick Briest, Shuchi Chawla, Eric Demaine, Tomás Feder,
Uri Feige, Venkat Gurusuami, MohammadTaghi Hajiaghayi, Anna
Karlin, David Kempe, Vladlin Koltun, Robert Kleinberg, Piotr Krysta,
Clare Mathieu, Frank McSherry, Rajeev Motwani, and An Zhu.
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Literature

Algorithmic Pricing in the Literature

• unlimited supply (mostly).

• many interesting special cases.

• includes work of: Gagan Aggarwal, Maria-Florina Balcan, Avrim
Blum, Patrick Briest, Shuchi Chawla, Eric Demaine, Tomás Feder,
Uri Feige, Venkat Gurusuami, MohammadTaghi Hajiaghayi, Anna
Karlin, David Kempe, Vladlin Koltun, Robert Kleinberg, Piotr Krysta,
Clare Mathieu, Frank McSherry, Rajeev Motwani, and An Zhu.

• hard (even to approximate).
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Overview

1. Review unlimited supply setting:

(a) Algorithmic pricing.

(b)=⇒ Mechanism design via pricing.

2. Generalize to limited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

3. Generality & conclusions.
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Auction Problem

The Unlimited Supply Auction Problem:

Given:

• unlimited supply of stuff.

• Set S of n bidders with preferences for stuff.

• class G of reasonable offers.

Design: Single round, sealed bid, truthful auction with profit near that
of OPTG .

Recall Notation:

• g(i) = payoff from bidder i when offered g.

• g(S) =
∑

i∈S g(i).

• optG(S) = argmaxg∈G g(S).

• OPT = OPTG(S) = maxg∈G g(S).
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Random Sampling Auction

Generalization of auction from [Goldberg, Hartline, Wright ’01]:

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
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Random Sampling Auction

Generalization of auction from [Goldberg, Hartline, Wright ’01]:

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2
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Random Sampling Auction

Generalization of auction from [Goldberg, Hartline, Wright ’01]:

Random Sampling Optimal Offer Auction, RSOOG
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Random Sampling Auction

Generalization of auction from [Goldberg, Hartline, Wright ’01]:

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Fact: RSOOG is truthful.
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Random Sampling Auction

Generalization of auction from [Goldberg, Hartline, Wright ’01]:

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Fact: RSOOG is truthful.

Question: when does RSOOG perform well?
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)
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Intuition:
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)
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• Suppose all g ∈ G are good, then
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Intuition:

• Suppose all g ∈ G are good, then

• p(S1, g2) ≥ p(S2, g2) − εOPTG .
p(S2, g1) ≥ p(S1, g1) − εOPTG .
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Intuition:

• Suppose all g ∈ G are good, then

• p(S1, g2) ≥ p(S2, g2) − εOPTG .
p(S2, g1) ≥ p(S1, g1) − εOPTG .

• p(S1, g1) + p(S2, g2) ≥ OPTG .
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Intuition:

• Suppose all g ∈ G are good, then

• p(S1, g2) ≥ p(S2, g2) − εOPTG .
p(S2, g1) ≥ p(S1, g1) − εOPTG .

• p(S1, g1) + p(S2, g2) ≥ OPTG = p(S1, g
∗) + p(S2, g

∗).
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Intuition:

• Suppose all g ∈ G are good, then

• p(S1, g2) ≥ p(S2, g2) − εOPTG .
p(S2, g1) ≥ p(S1, g1) − εOPTG .

• p(S1, g1) + p(S2, g2) ≥ OPTG = p(S1, g
∗) + p(S2, g

∗).

• Profit = p(S1, g2) + p(S2, g1) .
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Performance Analysis

(The following analysis is from [Balcan, Blum, Hartline, Mansour ’05])

Definition: g is good for partitions S1 and S2 if

|p(S1, g) − p(S2, g))| ≤ εOPT.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Intuition:

• Suppose all g ∈ G are good, then

• p(S1, g2) ≥ p(S2, g2) − εOPTG .
p(S2, g1) ≥ p(S1, g1) − εOPTG .

• p(S1, g1) + p(S2, g2) ≥ OPTG = p(S1, g
∗) + p(S2, g

∗).

• Profit = p(S1, g2) + p(S2, g1) ≥ OPTG −2εOPT.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.

Consider: (for δ � 1)

• Suppose: |G| e−ε2 OPT /2h ≤ δ.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.

Consider: (for δ � 1)

• Suppose: |G| e−ε2 OPT /2h ≤ δ.

• Then: union bound ⇒ Pr[any g ∈ G is not good] ≤ δ.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.

Consider: (for δ � 1)

• Suppose: |G| e−ε2 OPT /2h ≤ δ. (i.e., OPTG ≥ 2h
ε2 ln |G|

δ )

• Then: union bound ⇒ Pr[any g ∈ G is not good] ≤ δ.
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.

Consider: (for δ � 1)

• Suppose: |G| e−ε2 OPT /2h ≤ δ. (i.e., OPTG ≥ 2h
ε2 ln |G|

δ )

• Then: union bound ⇒ Pr[any g ∈ G is not good] ≤ δ.

Theorem: With probability 1 − δ,

Profit ≥ (1 − 2ε)OPTG when OPTG ≥ 2h
ε2 log |G|

δ .
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Performance Analysis (cont)

Lemma: All g ∈ G are good ⇒ Profit ≥ OPTG −2εOPT.

Lemma: For g with g(i) ≤ h and random partitions S1 and S2:

Pr[g not good] ≤ 2e−ε2 OPT /2h.

Consider: (for δ � 1)

• Suppose: |G| e−ε2 OPT /2h ≤ δ. (i.e., OPTG ≥ 2h
ε2 ln |G|

δ )

• Then: union bound ⇒ Pr[any g ∈ G is not good] ≤ δ.

Theorem: With probability 1 − δ,

Profit ≥ (1 − 2ε)OPTG when OPTG ≥ 2h
ε2 log |G|

δ .

Interpretation: convergence rate is O(h log |G|).
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Example: Digital Good Auctions

Example: Digital good with discretized prices.

• Bidders with valuations in [1, h] for a good.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Rate: O(h log |G|) = O(h log log h)
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Example: Path Auctions

E.g., selling bandwidth on paths in a graph.

v1

v2

v3 v4

v5

v6
Consumer 1 wants path from v1 to v2 for $5.
Consumer 2 wants path from v2 to v3 for $3.
. . .
Consumer n wants path from v1 to v5 for $6.
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Example: Path Auctions

E.g., selling bandwidth on paths in a graph.

v1
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v3 v4

v5

v6

$2

$2
$3

$2

$1

Consumer 1 wants path from v1 to v2 for $5.
Consumer 2 wants path from v2 to v3 for $3.
. . .
Consumer n wants path from v1 to v5 for $6.

Let G be set of power-of-two pricings of links in the network.
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Example: Path Auctions

E.g., selling bandwidth on paths in a graph.

v1

v2

v3 v4

v5

v6

$2

$2
$3

$2

$1

Consumer 1 wants path from v1 to v2 for $5.
Consumer 2 wants path from v2 to v3 for $3.
. . .
Consumer n wants path from v1 to v5 for $6.

Let G be set of power-of-two pricings of links in the network.

Fact: For network with m links, |G| ≈ logm h

Result: Convergence rate of RSOOG is O(hm log log h).
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Overview

1. Review unlimited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

2.=⇒ Generalize to limited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

3. Generality & conclusions.
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Limited Supply Algorithmic Pricing

The Limited Supply Algorithmic Pricing problem:

Given:

• limited supply of stuff, C1, . . . , Cm

• Set S of n bidders and their preferences for stuff.

• class G of reasonable offers.

Design: Algorithm to compute optimal offer from G.
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Limited Supply Algorithmic Pricing

The Limited Supply Algorithmic Pricing problem:

Given:

• limited supply of stuff, C1, . . . , Cm

• Set S of n bidders and their preferences for stuff.

• class G of reasonable offers.

Design: Algorithm to compute optimal offer from G.

Notation:

• p(i, g) = payoff from consumer i when offered g ∈ G.

• p(S, g) =
∑

i∈S p(i, g).

• xj(i, g) = consumer i’s demand for item j when offered g ∈ G.

• xj(S, g) =
∑

i∈S xj(i, g).

What if xj(S, g) > Cj?
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Dealing with Excess Demand

Two approaches:

• restrict algorithm. [Gurusuami et al. ’05]

– i.e., only consider g ∈ G with xj(S, g) ≤ Cj for all j)

OPTIMAL AUCTIONS – MARCH 28, 2007
16



Dealing with Excess Demand

Two approaches:

• restrict algorithm. [Gurusuami et al. ’05]
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Dealing with Excess Demand

Two approaches:

• restrict algorithm. [Gurusuami et al. ’05]

– i.e., only consider g ∈ G with xj(S, g) ≤ Cj for all j)

– problem: random sampling auction may still exceed supply.

• prioritize consumers randomly. [Borgs et al. ’05]

– randomly order bidders

– make offer “first come first served, while supplies last”
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Dealing with Excess Demand

Two approaches:

• restrict algorithm. [Gurusuami et al. ’05]

– i.e., only consider g ∈ G with xj(S, g) ≤ Cj for all j)

– problem: random sampling auction may still exceed supply.

• prioritize consumers randomly. [Borgs et al. ’05]

– randomly order bidders

– make offer “first come first served, while supplies last”

What is the payoff of offer g?
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Single Commodity and Uniform Knapsack

A knapsack problem:

• consumer payoffs: p(1, g), . . . , p(n, g).

• consumer demands: x(1, g), . . . , x(n, g).

• capacity: C

Question: what is expected payoff of “random first come first served”?

OPTIMAL AUCTIONS – MARCH 28, 2007
17



Single Commodity and Uniform Knapsack

A knapsack problem:

• consumer payoffs: p(1, g), . . . , p(n, g).

• consumer demands: x(1, g), . . . , x(n, g).

• capacity: C

Question: what is expected payoff of “random first come first served”?

Theorem: When x(i, S) > C then

E[Payoff(S, g, C)] =
(C ± Θ(xmax))p(S, g)
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where xmax = maxi x(i, g).
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Single Commodity and Uniform Knapsack

A knapsack problem:

• consumer payoffs: p(1, g), . . . , p(n, g).

• consumer demands: x(1, g), . . . , x(n, g).

• capacity: C

Question: what is expected payoff of “random first come first served”?

Theorem: When x(i, S) > C then

E[Payoff(S, g, C)] =
(C ± Θ(xmax))p(S, g)

x(i, S)

where xmax = maxi x(i, g).

Proof: via reduction to uniform payoff case (i.e., p(i, g) = 1)

Definition: Estimated payoff of g on S: P (S, g, C) = C·p(S,g)
max{C,x(S,g)}
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Limited Supply Algorithmic Pricing

Definition: Estimated payoff of g on S: P (S, g, C) = C·p(S,g)
max{C,x(S,g)}

• optG(S,C) = argmaxg∈G P (S, g, C).

• OPTG(S,C) = maxg∈G P (S, g, C).

Algorithmic Pricing Goal: compute optG(S,C).
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Overview

1. Review unlimited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

2. Generalize to limited supply setting:

(a) Algorithmic pricing.

(b)=⇒ Mechanism design via pricing.

3. Generality & conclusions.
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Limited Supply Random Sampling Auction

Generalization of auction from [Borgs et al. ’05]:

Random Sampling Limited Supply Auction, RSLSG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2) on
half supply.

3. Offer g1 to S2 and g2 to S1.

S
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Fact: RSLSG is truthful.
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Limited Supply Random Sampling Auction

Generalization of auction from [Borgs et al. ’05]:

Random Sampling Limited Supply Auction, RSLSG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2) on
half supply.

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

g1 = opt(S1, C/2)

g2 = opt(S2, C/2)

g1 = opt(S1, C/2)

g2 = opt(S2, C/2)

Fact: RSLSG is truthful.

Question: when does RSLSG perform well?
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RSLSG Performance

Theorem: With probability 1 − δ,

Profit ≥ (1 − ε)OPTG

when OPTG

pmax
and C

xmax
are O( 1

ε2 log 4|G|
δ ).

Proof Sketch:

1. With probability 1 − δ all g are ε-good.
(with respect to p(S, g) and x(S, g)).

2. Thus, g1 and g2 are ε-good.

3. P (S1, g2, C/2) ≥ (1 − ε′)P (S2, g2, C/2).

4. P (S1, g
∗, C/2) + P (S1, g

∗, C/2) ≥ (1 − ε′′)P (S, g∗, C).

5. Profit ≥ (1 − ε′′′)OPTG(S,C).
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Example Analysis:

Claim: P (S1, g2, C/2) ≥ (1 − ε′)P (S2, g2, C/2).

Sketch:

P (S1, g2, C/2) = C
2

p(S1, g2)

max{C/2, x(S1, g2)}
)

≥ C
2

(1 − ε)p(S2, g2)

(1 + ε)max{C/2, x(S2, g2)}

= (1 − 2ε)P (S2, g2, C/2).
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Example Analysis:

Claim: P (S1, g2, C/2) ≥ (1 − ε′)P (S2, g2, C/2).

Sketch:

P (S1, g2, C/2) = C
2

p(S1, g2)

max{C/2, x(S1, g2)}
)

≥ C
2

(1 − ε)p(S2, g2)

(1 + ε)max{C/2, x(S2, g2)}

= (1 − 2ε)P (S2, g2, C/2).

Key Fact for Theorem: p(S, g) and x(S, g) are sums of i.i.d.
variables.
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Overview

1. Review unlimited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

2. Generalize to limited supply setting:

(a) Algorithmic pricing.

(b) Mechanism design via pricing.

3.=⇒ Generality & conclusions.
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Generality

This approach is very general:
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utility(outcome,price)
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Generality

This approach is very general:

• General linear objectives: p(S, g) =
∑

i∈S p(i, g)

– maximize profit (i.e., p(i, g) = payment)

– maximize welfare (i.e., p(i, g) = value)

• General agent preferences:
(given g, agent chooses favorite outcome, price)

– quasi-linear:
utility(outcome,price) = value(outcome) − price.

– budgets:
utility(outcome,price)

=

{

∞ if price > budget

value(outcome) - price otherwise

– etc.

• Approximation algorithms are ok.
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Economic Optimization

Economic

Optimization

Algorithmic

Mechanism
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Conclusions:

• For additive objectives and “small” agents, random sampling
reduces mechanism design to pricing.
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Economic Optimization

Economic

Optimization

Algorithmic

Mechanism

Design

truthful

Algorithmic

Pricing

fair prices

Conclusions:

• For additive objectives and “small” agents, random sampling
reduces mechanism design to pricing.

• Open: algorithmic pricing.
(New direction: limited supply, welfare maximization.)

• Open: non-linear objectives
(e.g., makespan or non-additive costs).
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