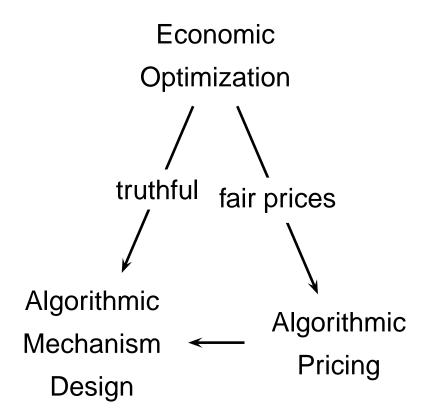
The Simple Mathematics of Optimal Auctions

Jason D. Hartline (joint with Maria-Florina Balcan, Nikhil Devanur, and Kunal Talwar)

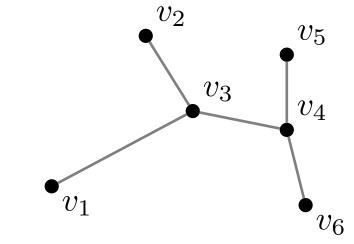
March 28, 2007



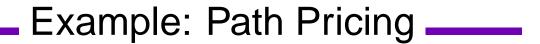
- \implies 1. Review unlimited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
 - 2. Generalize to limited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
 - 3. Generality & conclusions.

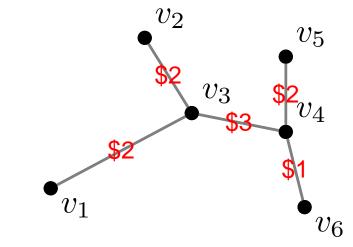
Example: Path Pricing _____

Example: *Edge pricing selling paths.*

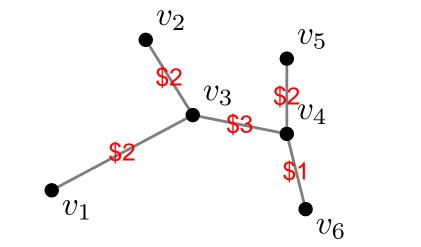


Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.

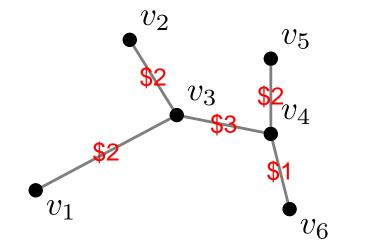




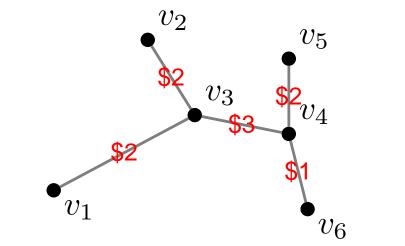
Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.



Consumer 1 wants path from v_1 to v_2 for \$5. (pays \$4) Consumer 2 wants path from v_2 to v_3 for \$3.



Consumer 1 wants path from v_1 to v_2 for \$5. (pays \$4) Consumer 2 wants path from v_2 to v_3 for \$3. (not served)



Consumer 1 wants path from v_1 to v_2 for \$5. (pays \$4) Consumer 2 wants path from v_2 to v_3 for \$3. (not served)

Goal: price edges to maximize objective.

The Unlimited Supply Algorithmic Pricing problem:

Given:

- unlimited supply of stuff.
- Set S of n consumers and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

The Unlimited Supply Algorithmic Pricing problem:

Given:

- unlimited supply of stuff.
- Set S of n consumers and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

•
$$p(i,g) = payoff$$
 from consumer i when offered $g \in \mathcal{G}$.

The Unlimited Supply Algorithmic Pricing problem:

Given:

- unlimited supply of stuff.
- Set S of n consumers and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

• p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.

•
$$p(S,g) = \sum_{i \in S} p(i,g).$$

The Unlimited Supply Algorithmic Pricing problem:

Given:

- unlimited supply of stuff.
- Set S of n consumers and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

- p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.
- $p(S,g) = \sum_{i \in S} p(i,g).$

•
$$\operatorname{opt}_{\mathcal{G}}(S) = \operatorname{argmax}_{g \in \mathcal{G}} p(S, g).$$

The Unlimited Supply Algorithmic Pricing problem:

Given:

- unlimited supply of stuff.
- Set S of n consumers and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

- p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.
- $p(S,g) = \sum_{i \in S} p(i,g).$

•
$$\operatorname{opt}_{\mathcal{G}}(S) = \operatorname{argmax}_{g \in \mathcal{G}} p(S, g).$$

• OPT = OPT_{\mathcal{G}} $(S) = \max_{g \in \mathcal{G}} p(S, g)$..

Example: digital good

- Single item for sale (unlimited supply).
- Consumers have valuations for single copy of item, (v_1, \ldots, v_n) .
- Consumers are indistinguishable.

Example: *digital good*

- Single item for sale (unlimited supply).
- Consumers have valuations for single copy of item, (v_1, \ldots, v_n) .
- Consumers are indistinguishable.
- $\mathcal{G} =$ set of all prices, i.e., $g_q =$ "take-it-or-leave-it at price q".

Example: digital good

- Single item for sale (unlimited supply).
- Consumers have valuations for single copy of item, (v_1, \ldots, v_n) .
- Consumers are indistinguishable.
- $\mathcal{G} =$ set of all prices, i.e., $g_q =$ "take-it-or-leave-it at price q".

•
$$p(i, g_q) = \begin{cases} q & \text{if } q \leq v_i \\ 0 & \text{o.w.} \end{cases}$$

Example: *digital good*

- Single item for sale (unlimited supply).
- Consumers have valuations for single copy of item, (v_1, \ldots, v_n) .
- Consumers are indistinguishable.
- $\mathcal{G} =$ set of all prices, i.e., $g_q =$ "take-it-or-leave-it at price q".

•
$$p(i, g_q) = \begin{cases} q & \text{if } q \leq v_i \\ 0 & \text{o.w.} \end{cases}$$

How can we compute $\operatorname{opt}_{\mathcal{G}}$?

Example: digital good

- Single item for sale (unlimited supply).
- Consumers have valuations for single copy of item, (v_1, \ldots, v_n) .
- Consumers are indistinguishable.
- $\mathcal{G} =$ set of all prices, i.e., $g_q =$ "take-it-or-leave-it at price q".

•
$$p(i, g_q) = \begin{cases} q & \text{if } q \leq v_i \\ 0 & \text{o.w.} \end{cases}$$

How can we compute $\operatorname{opt}_{\mathcal{G}}$?

- 1. Sort valuations: $v_1 \ge \ldots \ge v_n$
- 2. Output v_i to maximize $i \times v_i$.

Algorithmic Pricing in the Literature

- unlimited supply (mostly).
- many interesting special cases.
- includes work of: Gagan Aggarwal, Maria-Florina Balcan, Avrim Blum, Patrick Briest, Shuchi Chawla, Eric Demaine, Tomás Feder, Uri Feige, Venkat Gurusuami, MohammadTaghi Hajiaghayi, Anna Karlin, David Kempe, Vladlin Koltun, Robert Kleinberg, Piotr Krysta, Clare Mathieu, Frank McSherry, Rajeev Motwani, and An Zhu.

Algorithmic Pricing in the Literature

- unlimited supply (mostly).
- many interesting special cases.
- includes work of: Gagan Aggarwal, Maria-Florina Balcan, Avrim Blum, Patrick Briest, Shuchi Chawla, Eric Demaine, Tomás Feder, Uri Feige, Venkat Gurusuami, MohammadTaghi Hajiaghayi, Anna Karlin, David Kempe, Vladlin Koltun, Robert Kleinberg, Piotr Krysta, Clare Mathieu, Frank McSherry, Rajeev Motwani, and An Zhu.
- hard (even to approximate).

1. Review unlimited supply setting:

- (a) Algorithmic pricing.
- \Longrightarrow (b) Mechanism design via pricing.
 - 2. Generalize to limited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
 - 3. Generality & conclusions.

Auction Problem _____

The Unlimited Supply Auction Problem:

Given:

- unlimited supply of stuff.
- Set S of n bidders with preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Single round, sealed bid, *truthful* auction with profit near that of $OPT_{\mathcal{G}}$.

Recall Notation:

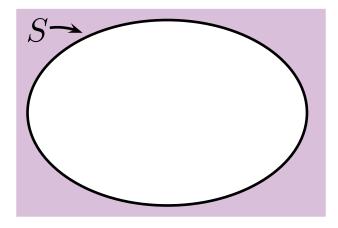
- g(i) = payoff from bidder i when offered g.
- $g(S) = \sum_{i \in S} g(i)$.

•
$$\operatorname{opt}_{\mathcal{G}}(S) = \operatorname{argmax}_{g \in \mathcal{G}} g(S).$$

• OPT = OPT_{\mathcal{G}} $(S) = \max_{g \in \mathcal{G}} g(S)$.

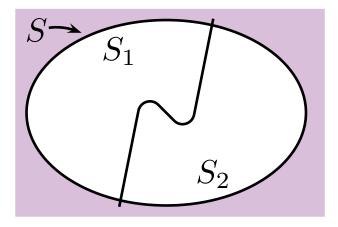
Generalization of auction from [Goldberg, Hartline, Wright '01]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .



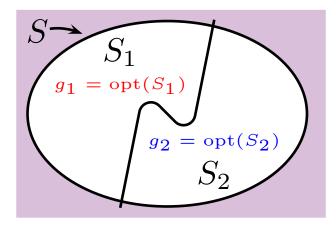
Generalization of auction from [Goldberg, Hartline, Wright '01]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .



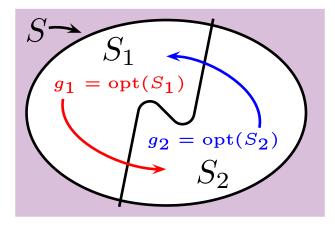
Generalization of auction from [Goldberg, Hartline, Wright '01]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Generalization of auction from [Goldberg, Hartline, Wright '01]:

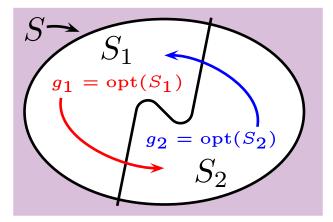
- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Generalization of auction from [Goldberg, Hartline, Wright '01]:

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

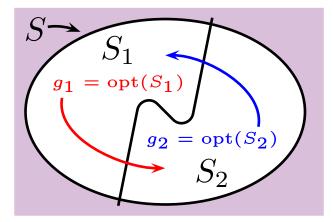


Fact: $RSOO_{\mathcal{G}}$ is truthful.

Generalization of auction from [Goldberg, Hartline, Wright '01]:

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Fact: $RSOO_{\mathcal{G}}$ is truthful.

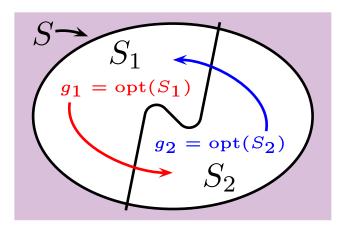
Question: when does $RSOO_{\mathcal{G}}$ perform well?

Definition: g is good for partitions S_1 and S_2 if $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT}.$

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

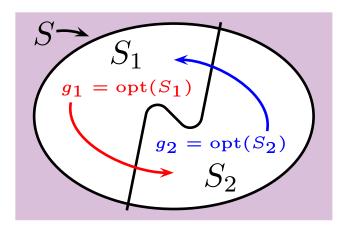
Intuition:



Definition: g is good for partitions S_1 and S_2 if $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT}.$

Intuition:

• Suppose all $g \in \mathcal{G}$ are good, then



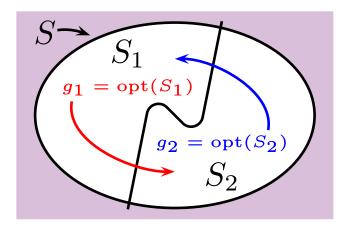
(The following analysis is from [Balcan, Blum, Hartline, Mansour '05])

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

Intuition:

- Suppose all $g \in \mathcal{G}$ are good , then
- $p(S_1, g_2) \ge p(S_2, g_2) \epsilon \operatorname{OPT}_{\mathcal{G}}$. $p(S_2, g_1) \ge p(S_1, g_1) - \epsilon \operatorname{OPT}_{\mathcal{G}}$.



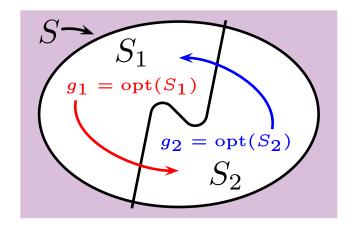
(The following analysis is from [Balcan, Blum, Hartline, Mansour '05])

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

Intuition:

- Suppose all $g \in \mathcal{G}$ are good , then
- $p(S_1, g_2) \ge p(S_2, g_2) \epsilon \operatorname{OPT}_{\mathcal{G}}$ $p(S_2, g_1) \ge p(S_1, g_1) - \epsilon \operatorname{OPT}_{\mathcal{G}}$.
- $p(S_1, g_1) + p(S_2, g_2) \ge \operatorname{OPT}_{\mathcal{G}}$



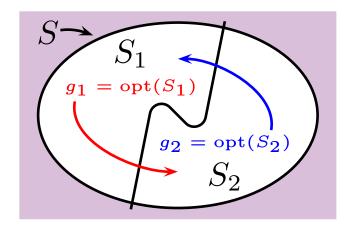
(The following analysis is from [Balcan, Blum, Hartline, Mansour '05])

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

Intuition:

- Suppose all $g \in \mathcal{G}$ are good , then
- $p(S_1, g_2) \ge p(S_2, g_2) \epsilon \operatorname{OPT}_{\mathcal{G}}$. $p(S_2, g_1) \ge p(S_1, g_1) - \epsilon \operatorname{OPT}_{\mathcal{G}}$.



• $p(S_1, g_1) + p(S_2, g_2) \ge OPT_{\mathcal{G}} = p(S_1, g^*) + p(S_2, g^*).$

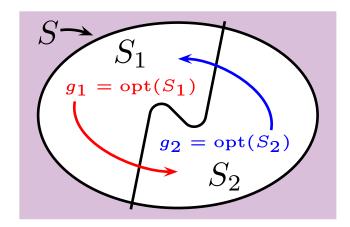
(The following analysis is from [Balcan, Blum, Hartline, Mansour '05])

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

Intuition:

- Suppose all $g \in \mathcal{G}$ are good , then
- $p(S_1, g_2) \ge p(S_2, g_2) \epsilon \operatorname{OPT}_{\mathcal{G}}$. $p(S_2, g_1) \ge p(S_1, g_1) - \epsilon \operatorname{OPT}_{\mathcal{G}}$.



- $p(S_1, g_1) + p(S_2, g_2) \ge OPT_{\mathcal{G}} = p(S_1, g^*) + p(S_2, g^*).$
- Profit = $p(S_1, g_2) + p(S_2, g_1)$

Performance Analysis ____

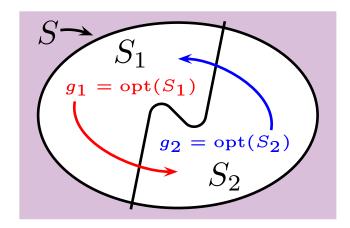
(The following analysis is from [Balcan, Blum, Hartline, Mansour '05])

Definition: g is good for partitions S_1 and S_2 if

 $|p(S_1,g) - p(S_2,g))| \le \epsilon \text{ OPT.}$

Intuition:

- Suppose all $g \in \mathcal{G}$ are good , then
- $p(S_1, g_2) \ge p(S_2, g_2) \epsilon \operatorname{OPT}_{\mathcal{G}}$ $p(S_2, g_1) \ge p(S_1, g_1) - \epsilon \operatorname{OPT}_{\mathcal{G}}$.



- $p(S_1, g_1) + p(S_2, g_2) \ge \text{OPT}_{\mathcal{G}} = p(S_1, g^*) + p(S_2, g^*).$
- Profit = $p(S_1, g_2) + p(S_2, g_1) \ge \operatorname{OPT}_{\mathcal{G}} 2\epsilon \operatorname{OPT}$.

Performance Analysis (cont)

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Performance Analysis (cont) _____

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Performance Analysis (cont) _____

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Consider: (for $\delta \ll 1$)

• Suppose:
$$|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}/2h} \leq \delta$$
.

Performance Analysis (cont)

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Consider: (for $\delta \ll 1$)

- Suppose: $|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}/2h} \leq \delta$.
- Then: union bound $\Rightarrow \Pr[any \ g \in \mathcal{G} \text{ is not good}] \leq \delta.$

Performance Analysis (cont)

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Consider: (for $\delta \ll 1$)

- Suppose: $|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}/2h} \leq \delta$. (i.e., $\operatorname{OPT}_{\mathcal{G}} \geq \frac{2h}{\epsilon^2} \ln \frac{|\mathcal{G}|}{\delta}$)
- Then: union bound $\Rightarrow \Pr[any \ g \in \mathcal{G} \text{ is not good}] \leq \delta.$

Performance Analysis (cont) _____

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Consider: (for $\delta \ll 1$)

- Suppose: $|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}/2h} \leq \delta$. (i.e., $\operatorname{OPT}_{\mathcal{G}} \geq \frac{2h}{\epsilon^2} \ln \frac{|\mathcal{G}|}{\delta}$)
- Then: union bound $\Rightarrow \Pr[any \ g \in \mathcal{G} \text{ is not good}] \leq \delta.$

Theorem: With probability $1 - \delta$, Profit $\geq (1 - 2\epsilon) \operatorname{OPT}_{\mathcal{G}}$ when $\operatorname{OPT}_{\mathcal{G}} \geq \frac{2h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\delta}$.

Performance Analysis (cont) _____

Lemma: All $g \in \mathcal{G}$ are good \Rightarrow Profit $\geq \operatorname{OPT}_{\mathcal{G}} - 2\epsilon \operatorname{OPT}$.

Lemma: For g with $g(i) \leq h$ and random partitions S_1 and S_2 :

 $\Pr[g \text{ not good}] \le 2e^{-\epsilon^2 \operatorname{OPT}/2h}.$

Consider: (for $\delta \ll 1$)

- Suppose: $|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}/2h} \leq \delta$. (i.e., $\operatorname{OPT}_{\mathcal{G}} \geq \frac{2h}{\epsilon^2} \ln \frac{|\mathcal{G}|}{\delta}$)
- Then: union bound $\Rightarrow \Pr[any \ g \in \mathcal{G} \text{ is not good}] \leq \delta.$

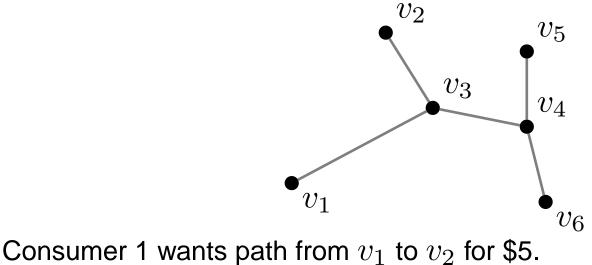
Theorem: With probability $1 - \delta$, Profit $\geq (1 - 2\epsilon) \operatorname{OPT}_{\mathcal{G}}$ when $\operatorname{OPT}_{\mathcal{G}} \geq \frac{2h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\delta}$.

Interpretation: convergence rate is $O(h \log |\mathcal{G}|)$.

Example: Digital good with discretized prices.

- Bidders with valuations in [1, h] for a good.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Rate: $O(h \log |\mathcal{G}|) = O(h \log \log h)$

E.g., selling bandwidth on paths in a graph.



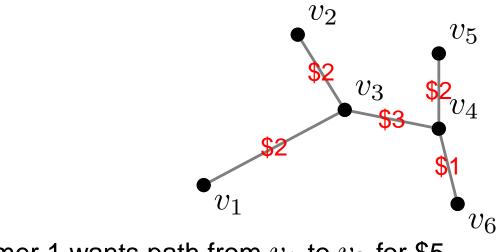
Consumer 2 wants path from v_1 to v_2 for \$3.

. . .

Consumer n wants path from v_1 to v_5 for \$6.

Example: Path Auctions _____

E.g., selling bandwidth on paths in a graph.

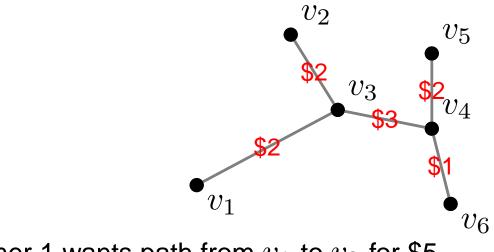


Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.

. . .

Consumer n wants path from v_1 to v_5 for \$6.

E.g., selling bandwidth on paths in a graph.

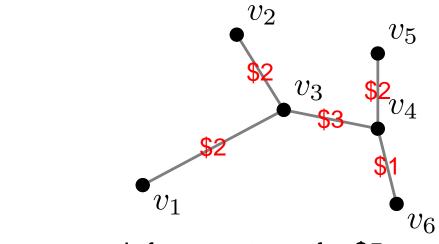


Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.

Consumer n wants path from v_1 to v_5 for \$6.

Let \mathcal{G} be set of power-of-two pricings of links in the network.

E.g., selling bandwidth on paths in a graph.



Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.

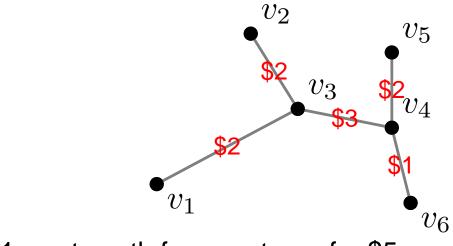
. . .

Consumer n wants path from v_1 to v_5 for \$6.

Let \mathcal{G} be set of power-of-two pricings of links in the network.

Fact: For network with m links, $|\mathcal{G}| \approx \log^m h$

E.g., selling bandwidth on paths in a graph.



Consumer 1 wants path from v_1 to v_2 for \$5. Consumer 2 wants path from v_2 to v_3 for \$3.

. . .

Consumer n wants path from v_1 to v_5 for \$6.

Let \mathcal{G} be set of power-of-two pricings of links in the network. **Fact:** For network with m links, $|\mathcal{G}| \approx \log^m h$ **Result:** Convergence rate of RSOO_{\mathcal{G}} is $O(hm \log \log h)$.

- 1. Review unlimited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
- \implies 2. Generalize to limited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
 - 3. Generality & conclusions.

The Limited Supply Algorithmic Pricing problem:

Given:

- limited supply of stuff, C_1,\ldots,C_m
- Set S of n bidders and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

The Limited Supply Algorithmic Pricing problem:

Given:

- limited supply of stuff, C_1,\ldots,C_m
- Set S of n bidders and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

- p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.
- $p(S,g) = \sum_{i \in S} p(i,g)$.

The Limited Supply Algorithmic Pricing problem:

Given:

- limited supply of stuff, C_1,\ldots,C_m
- Set S of n bidders and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

- p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.
- $p(S,g) = \sum_{i \in S} p(i,g).$
- $x_j(i,g) = \text{consumer } i$'s demand for item j when offered $g \in \mathcal{G}$.
- $x_j(S,g) = \sum_{i \in S} x_j(i,g).$

The Limited Supply Algorithmic Pricing problem:

Given:

- limited supply of stuff, C_1,\ldots,C_m
- Set S of n bidders and their preferences for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Algorithm to compute optimal offer from \mathcal{G} .

Notation:

- p(i,g) = payoff from consumer i when offered $g \in \mathcal{G}$.
- $p(S,g) = \sum_{i \in S} p(i,g).$
- $x_j(i,g) = \text{consumer } i$'s demand for item j when offered $g \in \mathcal{G}$.
- $x_j(S,g) = \sum_{i \in S} x_j(i,g).$

What if $x_j(S,g) > C_j$?

Dealing with Excess Demand

Two approaches:

- restrict algorithm. [Gurusuami et al. '05]
 - i.e., only consider $g \in \mathcal{G}$ with $x_j(S,g) \leq C_j$ for all j)

Two approaches:

- restrict algorithm. [Gurusuami et al. '05]
 - i.e., only consider $g \in \mathcal{G}$ with $x_j(S,g) \leq C_j$ for all j)
 - problem: random sampling auction may still exceed supply.

Two approaches:

- restrict algorithm. [Gurusuami et al. '05]
 - i.e., only consider $g \in \mathcal{G}$ with $x_j(S,g) \leq C_j$ for all j)
 - problem: random sampling auction may still exceed supply.
- prioritize consumers randomly. [Borgs et al. '05]
 - randomly order bidders
 - make offer "first come first served, while supplies last"

Two approaches:

- restrict algorithm. [Gurusuami et al. '05]
 - i.e., only consider $g \in \mathcal{G}$ with $x_j(S,g) \leq C_j$ for all j)
 - problem: random sampling auction may still exceed supply.
- prioritize consumers randomly. [Borgs et al. '05]
 - randomly order bidders
 - make offer "first come first served, while supplies last"

What is the payoff of offer g?

Single Commodity and Uniform Knapsack

A knapsack problem:

- consumer payoffs: $p(1,g), \ldots, p(n,g)$.
- consumer demands: $x(1,g), \ldots, x(n,g)$.
- capacity: C

Question: what is expected payoff of "random first come first served"?

Single Commodity and Uniform Knapsack

A knapsack problem:

- consumer payoffs: $p(1,g),\ldots,p(n,g)$.
- consumer demands: $x(1,g), \ldots, x(n,g)$.
- capacity: C

Question: what is expected payoff of "random first come first served"?

Theorem: When x(i,S) > C then

$$\mathbf{E}[\mathsf{Payoff}(S,g,C)] = \frac{(C\pm\Theta(x_{\max}))p(S,g)}{x(i,S)}$$

where $x_{\max} = \max_i x(i,g)$.

Single Commodity and Uniform Knapsack

A knapsack problem:

- consumer payoffs: $p(1,g),\ldots,p(n,g)$.
- consumer demands: $x(1,g), \ldots, x(n,g)$.
- capacity: C

Question: what is expected payoff of "random first come first served"?

Theorem: When x(i,S) > C then

$$\mathbf{E}[\mathsf{Payoff}(S,g,C)] = \frac{(C\pm \Theta(x_{\max}))p(S,g)}{x(i,S)}$$

where $x_{\max} = \max_i x(i,g)$.

Proof: via reduction to uniform payoff case (i.e., p(i,g) = 1)

Definition: Estimated payoff of g on S: $P(S, g, C) = \frac{C \cdot p(S,g)}{\max\{C, x(S,g)\}}$

Definition: Estimated payoff of g on S: $P(S, g, C) = \frac{C \cdot p(S,g)}{\max\{C, x(S,g)\}}$

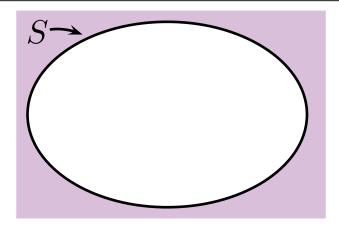
- $\operatorname{opt}_{\mathcal{G}}(S, C) = \operatorname{argmax}_{g \in \mathcal{G}} P(S, g, C).$
- $\operatorname{OPT}_{\mathcal{G}}(S, C) = \max_{g \in \mathcal{G}} P(S, g, C).$

Algorithmic Pricing Goal: compute $opt_{\mathcal{G}}(S, C)$.

- 1. Review unlimited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
- 2. Generalize to limited supply setting:
 - (a) Algorithmic pricing.
- \Longrightarrow (b) Mechanism design via pricing.
 - 3. Generality & conclusions.

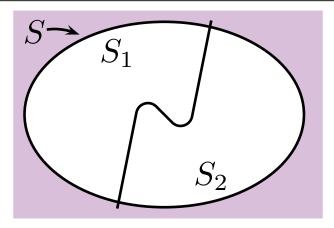
Generalization of auction from [Borgs et al. '05]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



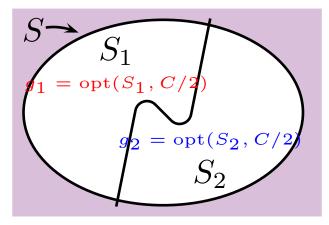
Generalization of auction from [Borgs et al. '05]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



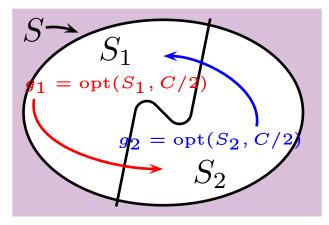
Generalization of auction from [Borgs et al. '05]:

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Generalization of auction from [Borgs et al. '05]:

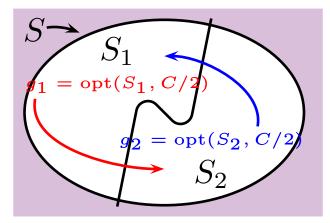
- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Generalization of auction from [Borgs et al. '05]:

Random Sampling Limited Supply Auction, $RSLS_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .

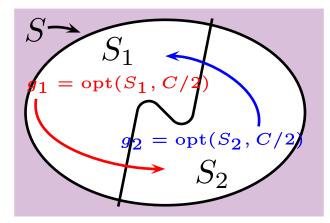


Fact: $RSLS_{\mathcal{G}}$ is truthful.

Generalization of auction from [Borgs et al. '05]:

Random Sampling Limited Supply Auction, $RSLS_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2) on half supply.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Fact: $RSLS_{\mathcal{G}}$ is truthful.

Question: when does $RSLS_{\mathcal{G}}$ perform well?

$RSLS_{\mathcal{G}}$ Performance

Theorem: With probability $1 - \delta$, $\operatorname{Profit} \geq (1 - \epsilon) \operatorname{OPT}_{\mathcal{G}}$ when $\frac{\operatorname{OPT}_{\mathcal{G}}}{p_{\max}}$ and $\frac{C}{x_{\max}}$ are $O(\frac{1}{\epsilon^2} \log \frac{4|\mathcal{G}|}{\delta})$.

Proof Sketch:

- 1. With probability 1δ all g are ϵ -good. (with respect to p(S, g) and x(S, g)).
- 2. Thus, g_1 and g_2 are ϵ -good.
- **3.** $P(S_1, g_2, C/2) \ge (1 \epsilon')P(S_2, g_2, C/2).$
- 4. $P(S_1, g^*, C/2) + P(S_1, g^*, C/2) \ge (1 \epsilon'')P(S, g^*, C).$
- 5. Profit $\geq (1 \epsilon''') \operatorname{OPT}_{\mathcal{G}}(S, C).$

Example Analysis:

Claim:
$$P(S_1, g_2, C/2) \ge (1 - \epsilon')P(S_2, g_2, C/2).$$

Sketch:

$$P(S_1, g_2, C/2) = \frac{C}{2} \frac{p(S_1, g_2)}{\max\{C/2, x(S_1, g_2)\}})$$

$$\geq \frac{C}{2} \frac{(1-\epsilon)p(S_2, g_2)}{(1+\epsilon)\max\{C/2, x(S_2, g_2)\}}$$

$$= (1-2\epsilon)P(S_2, g_2, C/2).$$

Example Analysis:

Claim:
$$P(S_1, g_2, C/2) \ge (1 - \epsilon')P(S_2, g_2, C/2).$$

Sketch:

$$P(S_1, g_2, C/2) = \frac{C}{2} \frac{p(S_1, g_2)}{\max\{C/2, x(S_1, g_2)\}})$$

$$\geq \frac{C}{2} \frac{(1 - \epsilon)p(S_2, g_2)}{(1 + \epsilon) \max\{C/2, x(S_2, g_2)\}}$$

$$= (1 - 2\epsilon)P(S_2, g_2, C/2).$$

Key Fact for Theorem: $p(S,g) \mbox{ and } x(S,g)$ are sums of i.i.d. variables.

- 1. Review unlimited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
- 2. Generalize to limited supply setting:
 - (a) Algorithmic pricing.
 - (b) Mechanism design via pricing.
- \implies 3. Generality & conclusions.

This approach is very general:

Generality _____

This approach is very general:

• General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$

Generality _____

This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)
 - maximize welfare (i.e., p(i,g) = value)

Generality _____

This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)

– maximize welfare (i.e., p(i,g) = value)

• General agent preferences: (given *g*, agent chooses favorite outcome, price)

This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)
 - maximize welfare (i.e., p(i,g) = value)
- General agent preferences: (given *g*, agent chooses favorite outcome, price)
 - quasi-linear:

utility(outcome, price) = value(outcome) - price.

This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)
 - maximize welfare (i.e., p(i,g) = value)
- General agent preferences:
 (given g, agent chooses favorite outcome, price)
 - quasi-linear:
 utility(outcome,price) = value(outcome) price.
 - budgets:

utility(outcome,price)

 $= \begin{cases} \infty & \text{if price} > \text{budget} \\ \text{value(outcome) - price} & \text{otherwise} \end{cases}$

This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)
 - maximize welfare (i.e., $p(\boldsymbol{i},\boldsymbol{g}) = \text{value})$
- General agent preferences:
 (given g, agent chooses favorite outcome, price)
 - quasi-linear:
 utility(outcome,price) = value(outcome) price.
 - budgets:

utility(outcome,price)

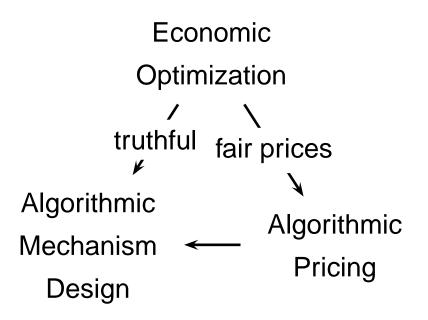
 $= \begin{cases} \infty & \text{if price} > \text{budget} \\ \text{value(outcome) - price} & \text{otherwise} \end{cases}$

– etc.

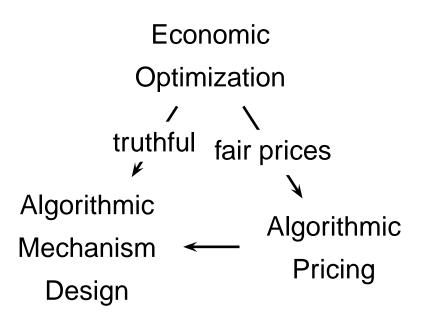
This approach is very general:

- General linear objectives: $p(S,g) = \sum_{i \in S} p(i,g)$
 - maximize profit (i.e., p(i,g) = payment)
 - maximize welfare (i.e., $p(\boldsymbol{i},\boldsymbol{g}) = \text{value})$
- General agent preferences:
 (given g, agent chooses favorite outcome, price)
 - quasi-linear:
 utility(outcome,price) = value(outcome) price.
 - budgets: utility(outcome,price) $= \begin{cases} \infty & \text{if price} > \text{budget} \\ \text{value(outcome)} - \text{price} & \text{otherwise} \\ - \text{ etc.} \end{cases}$
- Approximation algorithms are ok.

Economic Optimization _____



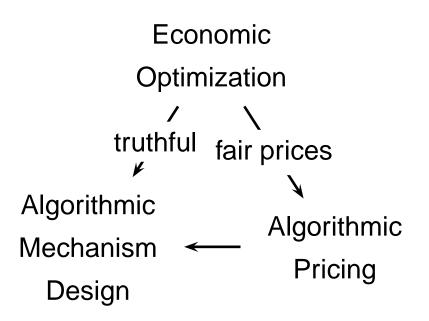
Economic Optimization ____



Conclusions:

• For additive objectives and "small" agents, random sampling reduces mechanism design to pricing.

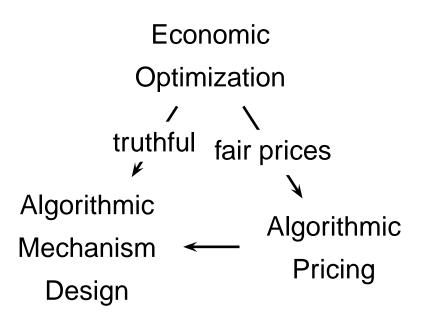
Economic Optimization ____



Conclusions:

- For additive objectives and "small" agents, random sampling reduces mechanism design to pricing.
- Open: algorithmic pricing.

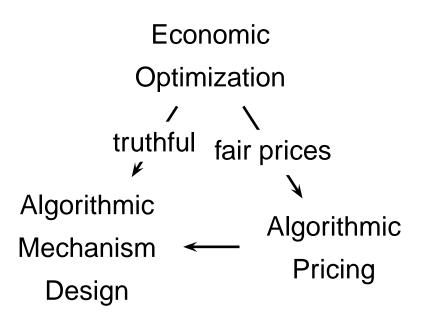
Economic Optimization _



Conclusions:

- For additive objectives and "small" agents, random sampling reduces mechanism design to pricing.
- **Open:** algorithmic pricing. (New direction: limited supply, welfare maximization.)

Economic Optimization _



Conclusions:

- For additive objectives and "small" agents, random sampling reduces mechanism design to pricing.
- **Open:** algorithmic pricing. (New direction: limited supply, welfare maximization.)
- **Open:** non-linear objectives (e.g., makespan or non-additive costs).