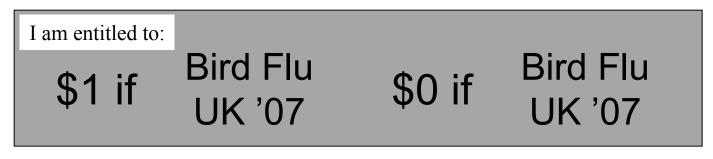

Computational Aspects of Prediction Markets

David M. Pennock, Yahoo! Research

Yiling Chen, Lance Fortnow, Joe Kilian, Evdokia Nikolova, Rahul Sami, Michael Wellman


Mech Design for Prediction

- Q: Will there be a bird flu outbreak in the UK in 2007?
- A: Uncertain. Evidence distributed: health experts, nurses, public
- Goal: Obtain a forecast as good as omniscient center with access to all evidence from all sources

 Turn it into a financial instrument payoff = realized value of variable

Contract	BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade OSAMA.CAPTURE.MAR07	5	6.3	8.5	5	8.9	730	+0.9
Trade OSAMA.CAPTURE.JUN07	23	11.1	13.2	5	13.3	210	0
Trade OSAMA.CAPTURE.SEP07	10	15.3	18.1	1	16.6	174	0
Trade OSAMA.CAPTURE.DEC07	1	20.0	22.0	1	21.5	640	0
Trade OSAMA.CAPTURE.DEC06	Expired at 0.0 11.1k			-20.0			

Contract	BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade BIRDFLU.USA.31MAR07	1	7.0	13.0	7	9.0	781	0
Trade BIRDFLU.USA.31DEC06	Expired at 0.0 3627				3627	-65.0	

Contract	BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade NFL.CHARGERS	102	26.5	26.6	8	26.5	35.9k	-0.3
Trade NFL.BEARS	4	14.2	14.4	3	14.5	37.3k	-0.4
Trade NFL.COLTS	100	8.0	8.7	3	8.8	27.1k	+1.0
Trade NFL.RAVENS	977	16.4	16.5	2	16.5	35.9k	+1.1
Trade NEL SATNES	16	9.7	9.8	12	9.7	35.0k	-0.5

Mech Design for Prediction

- Standard Properties
 - Efficiency
 - Inidiv. rationality
 - Budget balance
 - Revenue
 - Comp. complexity
- Equilibrium
 - General, Nash, ...

- PM Properties
 - #1: Info aggregation
 - Expressiveness
 - Liquidity
 - Bounded budget
 - Indiv. rationality
 - Comp. complexity
- Equilibrium
 - Rational
 expectations

Competes with: experts, scoring rules, opinion pools, ML/stats, polls, Delphi

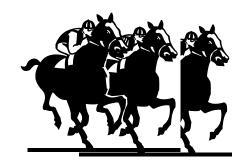
Outline

Some computational aspects of PMs

Combinatorics

- Betting on permutations
- Betting on Boolean expressions

Automated market makers


- Hanson's market scoring rules
- Dynamic parimutuel market
- (Computational model of a market)

Predicting Permutations

- Predict the ordering of a set of statistics
 - Horse race finishing times
 - Daily stock price changes
 - NFL Football quarterback passing yards
 - Any ordinal prediction
- Chen, Fortnow, Nikolova, Pennock, EC'07

Market Combinatorics Permutations

- A > B > C .1 • B > C > A .3
- A > C > B .2 C > A > B .1
- B > A > C .1 C > B > A .2

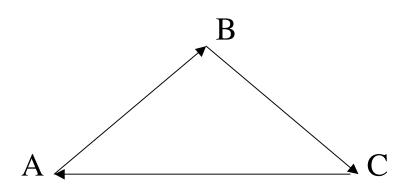
Market Combinatorics Permutations

• D>A>B>C .01 • D>B>C>A .05 • D>A>C>B .02 .1 • D > C > A > B • D>B>A>C .01 .2 • D>C>B>A .03 .01 • A > D > B > C • B>D>C>A .02 .1 • A > D > C > B • C > D > A > B .05 • C > D > B > A .02 • B > D > A > C .01 • B > C > D > A .03 • A > B > D > C .2 .01 • A > C > D > B• C > A > D > B **≥** B ≥ D > A .02 .01 • B>A>D>C .03 • A > B > C > D ► A < D .01 • A > C > B > D **≥** D > B • B > A > C > D .02 D > A

Bidding Languages

- Traders want to bet on *properties* of orderings, not explicitly on orderings: more natural, more feasible
 - A will win ; A will "show"
 - A will finish in [4-7] ; {A,C,E} will finish in top 10
 - A will beat B ; {A,D} will both beat {B,C}
- Buy 6 units of "\$1 if A>B" at price \$0.4
- Supported to a limited extent at racetrack today, but each in different betting pools
- Want centralized auctioneer to improve liquidity & information aggregation

Auctioneer Problem


 Auctioneer's goal: Accept orders with non-zero worstcase loss (auctioneer never loses money)

The Matching Problem

Formulated as LP

Example

- A three-way match
 - Buy 1 of "\$1 if A>B" for 0.7
 - Buy 1 of "\$1 if B>C" for 0.7
 - Buy 1 of "\$1 if C>A" for 0.7

Pair Betting

- All bets are of the form "A will beat B"
- Cycle with sum of prices > k-1 ==> Match (Find best cycle: Polytime)
- Match =/=> Cycle with sum of prices > k-1
- Theorem: The Matching Problem for Pair Betting is NP-hard (reduce from min feedback arc set)

Subset Betting

- All bets are of the form
 - "A will finish in positions 3-7", or
 - "A will finish in positions 1,3, or 10", or
 - "A, D, or F will finish in position 2"
- Theorem: The Matching Problem for Subset Betting is polytime (LP + maximum matching separation oracle)

Market Combinatorics Boolean

I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An
I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An
I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An

I am entitled to: \$1 if A1&A2&...&An I I am entitled to: \$1 if A1&A2&...&An

Betting on complete conjunctions is both • unnatural and infeasible

Market Combinatorics Boolean

A bidding language: write your own security

	I am entitled to: \$1 if Boolean_fn Boolean_fn						
Fc	For example						
	I am entitled to:	\$1 if A1 A2	I am entitled to: \$	1 if A1&A7			
	I am entitled to:	\$1 if (A1&A7) A13 (A2 A5)&A9					

- Offer to buy/sell q units of it at price p
- Let everyone else do the same
- Auctioneer must decide who trades with whom at what price... How? (next)
- More concise/expressive; more natural

The Matching Problem

 There are many possible matching rules for the auctioneer

for \$0.20

- A natural one: maximize trade subject to no-risk constraint
- Example:

•	buy 1 of	\$1 if A1	foi	r \$0.4 0
•	sell 1 of	\$1 if A1&	۹2	for \$0.10

- sell 1 of
- \$1 if A1&A2 • sell 1 of \$1 if A1&A2
- No matter what happens, auctioneer cannot lose money

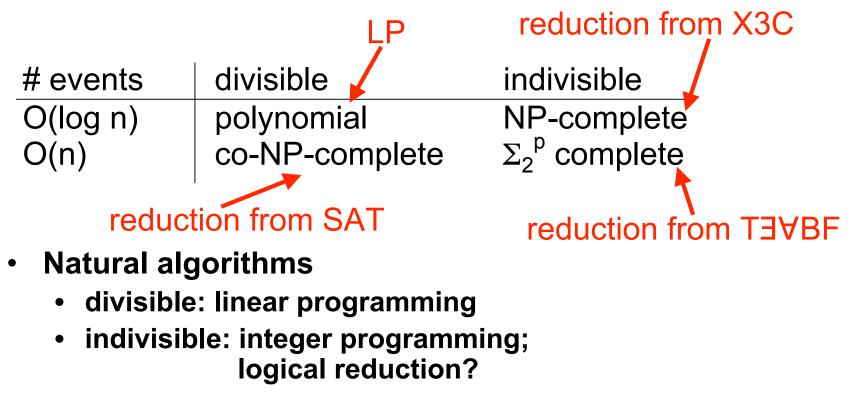
trader gets \$\$ in state: A1A2 A1 $\overline{A2}$ $\overline{A1}A2$ $\overline{A1}A2$ 0.60 0.60 -0.40 -0.40 -0.90 0.10 0.10 0.10 0.20 -0.80 0.20 0.20 -0.10 -0.10 -0.10 -0.10

Market Combinatorics Boolean

Prediction Markets for 2006 US Senate Races A .5 BQty Contract Bid Offer AQty Last Vol Chge 100 5.0 15.0 0 Trade 100 8.0 0 ALABAMA.DEM 2 95.0 100 Trade ALABAMA.REP 85.1 90.0 1 0 0 5.0 100 0 0 Trade ALABAMA.FIELD 2.5 100 10.0 20.0 100 0 0 Trade ALASKA.DEM 14.01 80.1 90.0 100 85.0 0 0 Trade ALASKA.REP 5.0 0 100 2.5 0 0 Trade ALASKA.FIELD Trade ARIZONA.DEM 100 27.0 35.0 100 28.010 0 75.0 100 10 0 Trade ARIZONA.REP 100 65.0 70.0 0 5.0 100 0 0 2.5 Trade ARIZONA, FIELD 100 25.0 30.0 71 26.0 30 0 Trade ARKANSAS.DEM 70.0 80.0 100 0 0 100 75.0 Trade ARKANSAS.REP 0 -5.0 100 2.5 Trade ARKANSAS ETELD 0

Predicted Probabilities of Senate Elections based on Market Data from Tradesports.com

Expected Republican 50.78 Democrat 47.25 Others 1.98 Leaning Democrat 49 Republican 49 Others 2


到

GOP Senate Control 69.0% GOP House Control 20.0%

Fortnow; Kilian; Pennock; Wellman

Complexity Results

- Divisible orders: will accept any q* ≤ q
- Indivisible: will accept all or nothing

Automated Market Makers

• A market maker (a.k.a. bookmaker) is a firm or person who is almost always willing to accept both buy and sell orders at some prices

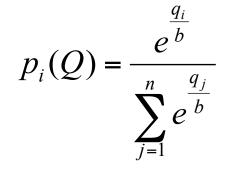
• Why an institutional market maker? Liquidity!

- Without market makers, the more expressive the betting mechanism is the less liquid the market is (few exact matches)
- Illiquidity discourages trading: Chicken and egg
- Subsidizes information gathering and aggregation: Circumvents no-trade theorems
- Market makers, unlike auctioneers, bear risk. Thus, we desire mechanisms that can bound the loss of market makers
 - Market scoring rules [Hanson 2002, 2003, 2006]
 - Dynamic pari-mutuel market [Pennock 2004]

Automated Market Makers

- n disjoint and exhaustive outcomes
- Market maker maintain vector Q of outstanding shares
- Market maker maintains a cost function C(Q) recording total amount spent by traders
- To buy ΔQ shares trader pays C(Q+ ΔQ) C(Q) to the market maker; Negative "payment" = receive money
- Instantaneous price functions are $p_i(Q) = \frac{\partial C(Q)}{\partial q_i}$
- At the beginning of the market, the market maker sets the initial Q⁰, hence subsidizes the market with C(Q⁰).
- At the end of the market, C(Q^f) is the total money collected in the market. It is the maximum amount that the MM will pay out.

[Thanks: Yiling Chen]


Hanson's Market Maker I Logarithmic Market Scoring Rule

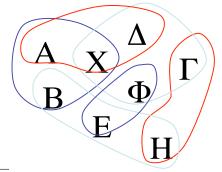
YAHOO! Research

- *n* mutually exclusive outcomes
- Shares pay \$1 if and only if outcome occurs
- Cost Function

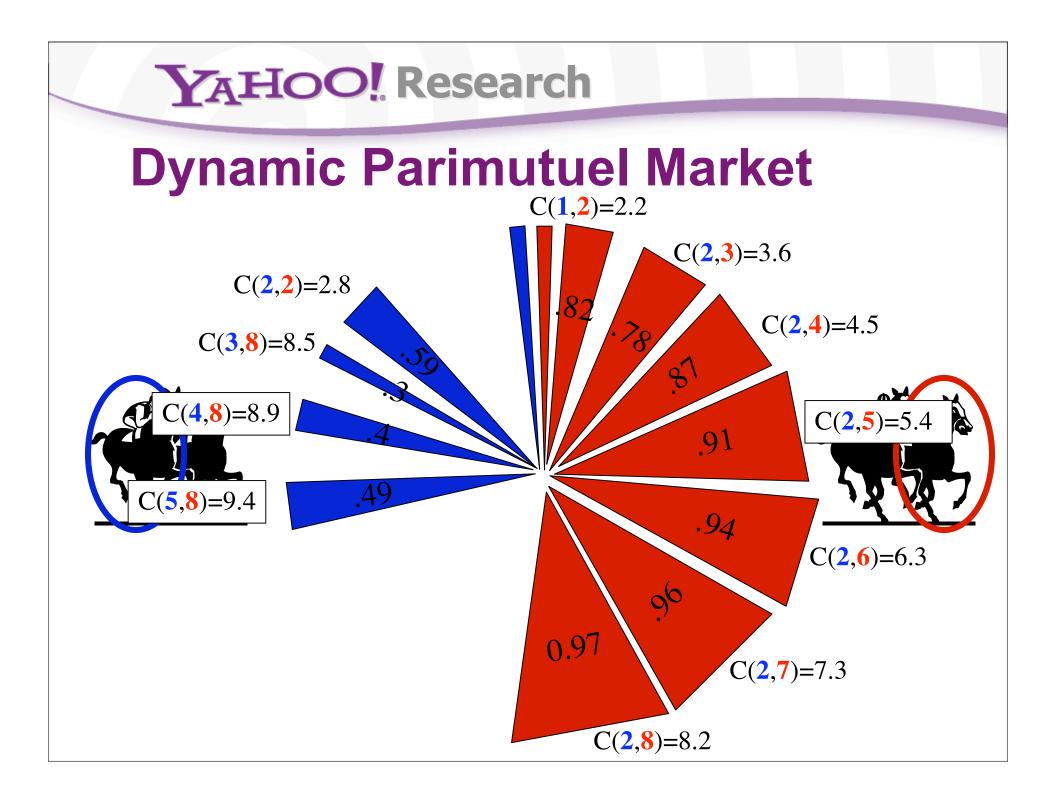
$$C(Q) = b \times \log(\sum_{i=1}^{n} e^{\frac{q_i}{b}})$$

Price Function

- **Cost Function** $C(Q) = \frac{\sum_{i=1}^{n} q_i}{n} + \frac{\sum_{i=1}^{n} q_i^2}{4b} + \frac{(\sum_{i=1}^{n} q_i)^2}{4b} - \frac{b}{n}$
- Price Function


$$p_i(Q) = \frac{1}{n} + \frac{q_i}{2b} - \frac{\sum_{j=1}^n q_j}{2nb}$$

Log Market Scoring Rule


- Market maker's loss is bounded by b * ln(n)
- Higher b ⇒more risk, more "liquidity"
- Level of liquidity (b) never changes as wagers are made
 - Could charge transaction fee, put back into b (Todd Proebsting)
- Much more to MSR: sequential shared scoring rule, combinatorial MM "for free", ... see Hanson 2002, 2003, 2006

Computational Issues

- Straightforward approach requires exponential space for prices, holdings, portfolios
- Could represent probabilities using a Bayes net or other compact representation; changes must keep distribution in the same representational class
- Could use multiple overlapping patrons, each with bounded loss. Limited arbitrage could be obtained by smart traders exploiting inconsistencies between patrons

Share-ratio price function

- One can view DPM as a market maker
- Cost Function:

$$C(Q) = \sqrt{\sum_{i=1}^{n} q_i^2}$$

Price Function:

$$p_i(Q) = \frac{q_i}{\sqrt{\sum_{j=1}^n q_j^2}}$$

- Properties
 - No arbitrage
 - $price_i/price_j = q_i/q_j$
 - price_i < \$1

Open Questions Combinatorial Betting

- Usual hunt: Are there natural, useful, expressive bidding languages (for permutations, Boolean, other) that admit polynomial time matching?
- Are there good heuristic matching algorithms (think WalkSAT for matching); logical reduction?
- How can we divide the surplus?
- What is the complexity of incremental matching?

Open Questions Automated Market Makers

- For every bidding language with polytime matching, does there exist a polytime MSR market maker?
- The automated MM algorithms are online algorithms: Are there other online MM algorithms that trade more for same loss bound?