YAIOOl. Research

Computational Aspects of Prediction Markets

David M. Pennock, Yahoo! Research
Yiling Chen, Lance Fortnow, Joe Kilian,
Evdokia Nikolova, Rahul Sami, Michael Wellman

YAHOO! Research

Mech Design for Prediction

- Q: Will there be a bird flu outbreak in the UK in 2007?
- A: Uncertain. Evidence distributed: health experts, nurses, public
- Goal: Obtain a forecast as good as omniscient center with access to all evidence from all sources

YAHOO! Research

Mech Design for Prediction

YAHOO! Research

A Prediction Market

- Take a random variable, e.g. Bird Flu Outbreak UK 2007?
(Y/N)
- Turn it into a financial instrument payoff = realized value of variable

I am entitled to:
\$1 if
Bird Flu UK '07
\$0 if
Bird Flu UK '07
http://tradesports.com

Contract		BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade	OSAMA.CAPTURE.MAR07	5	6.3	8.5	5	8.9	730	+0.9
Trade	OSAMA.CAPTURE.JUN07	23	11.1	13.2	5	13.3	210	0
Trade	OSAMA.CAPTURE.SEP07	10	15.3	18.1	1	16.6	174	0
Trade	OSAMA.CAPTURE.DEC07	1	20.0	22.0	1	21.5	640	0
Trade	OSAMA.CAPTURE.DEC06	Expired at 0.0					11.1 k	-20.0

Contract		BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade	BIRDFLU.USA. 31 MAR07	1	7.0	13.0	7	9.0	781	0
Trade	BIRDFLU.USA.31DEC06	Expired at 0.0					3627	-65.0

Contract		BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade	NFL.CHARGERS	102	26.5	26.6	8	26.5	35.9k	-0.3
Trade	NFL.BEARS	4	14.2	14.4	3	14.5	37.3k	-0.4
Trade	NFL.COLTS	100	8.0	8.7	3	8.8	27.1k	+1.0
Trade	NFL.RAVENS	977	16.4	16.5	2	16.5	35.9k	+1.1
Trade	NEI SATMTS	16	9.7	9.8	12	9.7	35.0k	-0.5

YAHOO! Research

Mech Design for Prediction

- Standard Properties • PM Properties
- Cfficiency
- Inidiv. rationality
- Budget balance-
- Revenue-
- Comp. complexity
- Equilibrium
- General, Nash, ...
- \#1: Info aggregation
- Expressiveness
- Liquidity
- Bounded budget
- Indiv. rationality
- Comp. complexity
- Equilibrium
- Rational expectations

Competes with:
experts, scoring
rules, opinion
pools, ML/stats,
polls, Delphi

YAHOO! Research

Outline

- Some computational aspects of PMs
- Combinatorics
- Betting on permutations
- Betting on Boolean expressions
- Automated market makers
- Hanson's market scoring rules
- Dynamic parimutuel market
- (Computational model of a market)

YAHOO! Research

Predicting Permutations

- Predict the ordering of a set of statistics
- Horse race finishing times
- Daily stock price changes
- NFL Football quarterback passing yards
- Any ordinal prediction
- Chen, Fortnow, Nikolova, Pennock, EC'07

YAHOO! Research

Market Combinatorics

Permutations

- $A>B>C$
.1
- $\mathrm{B}>\mathrm{C}>\mathrm{A}$
. 3
- $A>C>B$
. 2
. 1
- $C>A>B$
.1
- $B>A>C$
- $C>B>A$
. 2

YAHOO! Research

Market Combinatorics

Permutations

$D>A>B>C$. 01	- D $>$ B $>\mathrm{C}>\mathrm{A}$. 05
$D>A>C>B$. 02	- D $>\mathrm{C}>\mathrm{A}>\mathrm{B}$. 1
$D>B>A>C$. 01	D $>\mathrm{C}>\mathrm{B}>\mathrm{A}$. 2
A $>$ D $>$ B $>$ C	. 01	- $\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}$. 03
A $>$ D $>\mathrm{C}>\mathrm{B}$. 02	- $\mathrm{C}>\mathrm{D}>\mathrm{A}>\mathrm{B}$. 1
$\mathrm{B}>\mathrm{D}>\mathrm{A}>\mathrm{C}$. 05	- C $>$ D $>\mathrm{B}>\mathrm{A}$. 02
$\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}$. 01	- $\mathrm{B}>\mathrm{C}>\mathrm{D}>\mathrm{A}$. 03
$A>C>D>B$. 2	$\mathrm{C}>\mathrm{A}>\mathrm{D}>\mathrm{B}$. 01
$\mathrm{B}>\mathrm{A}>\mathrm{D}>\mathrm{C}$		$C>B>D>A$. 02
A $>$ B $>$ C $>$ D		A	. 03
$A>C>B>D$		B	. 01
B $>$ A $>$ C $>$ D		Q 2 Q ${ }^{\text {P }}$ -	02

YAHOO! Research

Bidding Languages

- Traders want to bet on properties of orderings, not explicitly on orderings: more natural, more feasible
- A will win ; A will "show"
- A will finish in [4-7] ; \{A,C,E\} will finish in top 10
- A will beat B; $\{A, D\}$ will both beat $\{B, C\}$
- Buy 6 units of "\$1 if $A>B$ " at price $\$ 0.4$
- Supported to a limited extent at racetrack today, but each in different betting pools
- Want centralized auctioneer to improve liquidity \& information aggregation

YAHOO! Research

Auctioneer Problem

- Auctioneer's goal:

Accept orders with non-zero worstcase loss (auctioneer never loses money)

The Matching Problem

- Formulated as LP

YAHOO! Research

Example

- A three-way match
- Buy 1 of " $\$ 1$ if $A>B$ " for 0.7
- Buy 1 of " $\$ 1$ if $\mathrm{B}>C$ " for 0.7
- Buy 1 of " $\$ 1$ if $\mathrm{C}>\mathrm{A}$ " for 0.7

YAHOO! Research

Pair Betting

- All bets are of the form "A will beat B"
- Cycle with sum of prices > k-1 ==> Match (Find best cycle: Polytime)
- Match =/=> Cycle with sum of prices > k-1
- Theorem: The Matching Problem for Pair Betting is NP-hard (reduce from min feedback arc set)

YAHOO! Research

Subset Betting

- All bets are of the form
- "A will finish in positions 3-7", or
- "A will finish in positions 1,3 , or 10 ", or
- "A, D, or F will finish in position 2"
- Theorem: The Matching Problem for Subset Betting is polytime (LP + maximum matching separation oracle)

YAHOO! Research

Market Combinatorics

Boolean

| I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \mathrm{~A} 2 \& \ldots \& \mathrm{An}$ | I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \mathrm{~A} 2 \& \ldots \& \overline{\mathrm{An}}$ |
| :---: | :---: | :---: |
| I am entitled to: $\$ 1$ if $\overline{\mathrm{A} 1 \& A 2 \& \ldots \& A n}$ | I am entitled to: $\$ 1$ if $\overline{\mathrm{A} 1 \& A 2 \& \ldots \& \overline{\mathrm{An}}}$ |
| I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \overline{\mathrm{~A} 2 \&} \ldots . . . \& \mathrm{An}$ | I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \overline{\mathrm{~A} 2 \& \ldots \& \overline{\mathrm{An}}}$ |

I am entitled to: $\$ 1$ if $\overline{\mathrm{A} 1} \& \overline{\mathrm{~A} 2} \& \ldots \& \mathrm{An}$
I am entitled to:
$\$ 1$ if $\overline{\mathrm{A} 1} \& \overline{\mathrm{~A} 2} \& \ldots \& \overline{\mathrm{An}}$

- Betting on complete conjunctions is both unnatural and infeasible

YAHOO! Research

Market Combinatorics

Boolean

- A bidding language: write your own security

> I am entitled to: \$1 if Boolean_fn | Boolean_fn

- For example

I am entitled to: $\$ 1$ if $A 1 \mid \overline{\mathrm{A} 2}$	I am entitled to: \$1 if A		
I am entitled to: $\$ 1$ if $(\mathrm{A} 1 \& \overline{\mathrm{~A} 7}) \\| \mathrm{A} 13 \mid(\mathrm{A} 2 \\| \overline{\mathrm{A} 5}) \& A 9$			

- Offer to buy/sell q units of it at price p
- Let everyone else do the same
- Auctioneer must decide who trades with whom at what price... How? (next)
- More concise/expressive; more natural

YAHOO! Research

The Matching Problem

- There are many possible matching rules for the auctioneer
- A natural one: maximize trade subject to no-risk constraint
- Example:
- buy 1 of
- sell 1 of
- sell 1 of

$\$ 1$ if A1	for $\$ 0.40$
$\$ 1$ if A1\&A2	for $\mathbf{\$ 0 . 1 0}$
$\$ 1$ if A1\&A2	for $\$ 0.20$

- No matter what happens, auctioneer cannot lose trader gets $\$ \$$ in state:

A 1 A 2	$\mathrm{~A} 1 \overline{\mathrm{~A} 2}$	$\overline{\mathrm{~A} 1 \mathrm{~A} 2}$	$\overline{\mathrm{~A} 1 \mathrm{~A} 2}$
0.60	0.60	-0.40	-0.40
-0.90	0.10	0.10	0.10
0.20	-0.80	0.20	0.20
-0.10	-0.10	-0.10	-0.10

YAHOO! Research

Market Combinatorics

Boolean

Prediction Markets for 2006 US Senate Races

Contract		BQty	Bid	Offer	AQty	Last	Vol	Chge
Trade	ALABAMA.DEM	100	5.0	15.0	100	8.0	0	0
Trade	ALABAMA.REP	2	85.1	95.0	100	90.0	1	0
Trade	ALABAMA.FIELD	0	-	5.0	100	2.5	0	0
Trade	ALASKA.DEM	100	10.0	20.0	100	14.0	0	0
Trade	ALASKA.REP	1	80.1	90.0	100	85.0	0	0
Trade	ALASKA.FIELD	0	-	5.0	100	2.5	0	0
Trade	ARIZONA.DEM	100	27.0	35.0	100	28.0	10	0
Trade	ARIZONA.REP	100	65.0	75.0	100	70.0	10	0
Trade	ARIZONA.FIELD	0	-	5.0	100	2.5	0	0
Trade	ARKANSAS.DEM	100	25.0	30.0	71	26.0	30	0
Trade	ARKANSAS.REP	100	70.0	80.0	100	75.0	0	0
Trade	ARKANSAS FIFIn	- 0	-	5.0	100	2.5	0	0

Predicted Probabilities of Senate Elections based on Market Data from Tradesports.com

Expected Republican 50.78 Democrat 47.25 Others 1.98
Leaning Democrat 49 Republican 49 Others 2

GOP Senate Control 69.0%
GOP House Control 20.0%

YAHOO! Research

Fortnow; Kilian; Pennock; Wellman

Complexity Results

- Divisible orders: will accept any q* $\mathbf{q}^{\text {q }}$
- Indivisible: will accept all or nothing

- Natural algorithms
- divisible: linear programming
- indivisible: integer programming;
logical reduction?

YAHOO! Research

Automated Market Makers

- A market maker (a.k.a. bookmaker) is a firm or person who is almost always willing to accept both buy and sell orders at some prices
- Why an institutional market maker? Liquidity!
- Without market makers, the more expressive the betting mechanism is the less liquid the market is (few exact matches)
- Illiquidity discourages trading: Chicken and egg
- Subsidizes information gathering and aggregation:

Circumvents no-trade theorems

- Market makers, unlike auctioneers, bear risk. Thus, we desire mechanisms that can bound the loss of market makers
- Market scoring rules [Hanson 2002, 2003, 2006]
- Dynamic pari-mutuel market [Pennock 2004]

YAHOO! Research

Automated Market Makers

- n disjoint and exhaustive outcomes
- Market maker maintain vector Q of outstanding shares
- Market maker maintains a cost function $C(Q)$ recording total amount spent by traders
- To buy ΔQ shares trader pays $C(Q+\Delta Q)-C(Q)$ to the market maker; Negative "payment" = receive money
- Instantaneous price functions are

$$
p_{i}(Q)=\frac{\partial C(Q)}{\partial q_{i}}
$$

- At the beginning of the market, the market maker sets the initial Q^{0}, hence subsidizes the market with $C\left(Q^{0}\right)$.
- At the end of the market, $C\left(Q^{f}\right)$ is the total money collected in the market. It is the maximum amount that the MM will pay out.

YAHOO! Research

Hanson's Market Maker I

Logarithmic Market Scoring Rule

- n mutually exclusive outcomes
- Shares pay \$1 if and only if outcome occurs
- Cost Function

$$
C(Q)=b \times \log \left(\sum_{i=1}^{n} e^{\frac{q_{i}}{b}}\right)
$$

- Price Function

$$
p_{i}(Q)=\frac{e^{\frac{q_{i}}{b}}}{\sum_{j=1}^{n} e^{\frac{q_{j}}{b}}}
$$

YAHOO! Research

Hanson's Market Maker II

Quadratic Market Scoring Rule

- We can also choose different cost and price functions
- Cost Function

$$
C(Q)=\frac{\sum_{i=1}^{n} q_{i}}{n}+\frac{\sum_{i=1}^{n} q_{i}^{2}}{4 b}+\frac{\left(\sum_{i=1}^{n} q_{i}\right)^{2}}{4 b}-\frac{b}{n}
$$

- Price Function

$$
p_{i}(Q)=\frac{1}{n}+\frac{q_{i}}{2 b}-\frac{\sum_{j=1}^{n} q_{j}}{2 n b}
$$

YAHOO! Research

Log Market Scoring Rule

- Market maker's loss is bounded by $b^{*} \ln (n)$
- Higher $b \Rightarrow$ more risk, more "liquidity"
- Level of liquidity (b) never changes as wagers are made
- Could charge transaction fee, put back into b (Todd Proebsting)
- Much more to MSR: sequential shared scoring rule, combinatorial MM "for free",
... see Hanson 2002, 2003, 2006

Computational Issues

- Straightforward approach requires exponential space for prices, holdings, portfolios
- Could represent probabilities using a Bayes net or other compact representation; changes must keep distribution in the same representational class
- Could use multiple overlapping patrons, each with bounded loss. Limited arbitrage could be obtained by smart traders exploiting inconsistencies between patrons

YАНОО! Research

Pari-Mutuel Market

Basic idea

YAHOO! Research

Dynamic Parimutuel Market

YAHOO! Research

Share-ratio price function

- One can view DPM as a market maker
- Cost Function:

$$
C(Q)=\sqrt{\sum_{i=1}^{n} q_{i}^{2}}
$$

- Price Function:
- Properties

$$
p_{i}(Q)=\frac{q_{i}}{\sqrt{\sum_{j=1}^{n} q_{j}^{2}}}
$$

- No arbitrage
- price $/{ }_{i}$ price $_{j}=q_{i} / q_{j}$
- price ${ }_{i}$ < \$1
- payoff if right $=\mathbf{C}\left(\mathrm{Q}_{\text {final }}\right) / \mathbf{q}_{\mathrm{o}}>\boldsymbol{\$ 1}$

YAHOO! Research

Open Questions
Combinatorial Betting

- Usual hunt: Are there natural, useful, expressive bidding languages (for permutations, Boolean, other) that admit polynomial time matching?
- Are there good heuristic matching algorithms (think WalkSAT for matching); logical reduction?
- How can we divide the surplus?
- What is the complexity of incremental matching?

YAHOO! Research

Open Questions
Automated Market Makers

- For every bidding language with polytime matching, does there exist a polytime MSR market maker?
- The automated MM algorithms are online algorithms: Are there other online MM algorithms that trade more for same loss bound?

