The Power of Two Prices: Beyond Cross-Monotonicity
 Incentive-Compatible Mechanism Design

Yvonne Bleischwitz Burkhard Monien
Florian Schoppmann Karsten Tiemann

Department of Computer Science
University of Paderborn

March 27, 2007

The Model

- $n \in \mathbb{N}$ players:
- Have private valuations $v_{i} \in \mathbb{R}_{\geq 0}$ for service, $\mathbf{v}:=\left(v_{i}\right)_{i \in[n]}$
- Submit bids $b_{i} \in \mathbb{R}_{\geq 0}$ to service provider, $\mathbf{b}:=\left(b_{i}\right)_{i \in[n]}$
- Service provider uses mechanism to determine outcome:

Definition (Cost-Sharing Mechanism)

- Desirable that $\mathbf{b}=\mathbf{v}$ but this cannot be a priori guaranteed

Common Assumptions for Cost-Sharing Mechanisms
Only consider mechanisms with the following properties $\forall i \in[n]$:

- NPT (No Positive Transfer) $=$ no negative payments:

$$
x_{i}(\mathrm{~b}) \geq 0
$$

- VP (Voluntary Participation) $=$ obey bids:

$$
x_{i}(\mathbf{b}) \leq b_{i}
$$

- CS* (Strict Consumer Sovereignty):

$$
\begin{aligned}
& \mathrm{CS}: \exists b_{i}^{+} \in \mathbb{R}_{\geq 0}: \forall \mathbf{b} \in \mathbb{R}_{\geq 0}^{n}:\left(b_{i} \geq b_{i}^{+} \Longrightarrow i \in Q(\mathbf{b})\right) \\
& \text { Strictness: } \forall \mathbf{b} \in \mathbb{R}_{\geq 0}^{n}:\left(b_{i}=0 \Longrightarrow i \notin Q(\mathbf{b})\right)
\end{aligned}
$$

Assume: v is true valuation vector, $(Q \times x)$ mechanism

- Player i's utility depends on bid vector:

$$
u_{i}(\mathbf{b}):= \begin{cases}v_{i}-x_{i}(\mathbf{b}) & \text { if } i \in Q(\mathbf{b}) \\ 0 & \text { if } i \notin Q(\mathbf{b})\end{cases}
$$

Desirable Properties of Cost-Sharing Mechanisms

- GSP (Group-Strategyproofness): \forall true valuations $v \in \mathbb{R}_{\geq 0}^{n}$: \nexists coalition $K \subseteq[n]$ such that \exists cheating possibility $\mathbf{b}_{K} \in \mathbb{R}_{\geq 0}^{K}$ with
- $u_{i}\left(\mathbf{v}_{-K}, \mathbf{b}_{K}\right) \geq u_{i}(\mathbf{v})$ for all $i \in K$ and
- $u_{i}\left(\mathbf{v}_{-K}, \mathbf{b}_{K}\right)>u_{i}(\mathbf{v})$ for at least one $i \in K$.

SP: Needs to hold only for coalitions K of size 1

Definition (n-Player Cost Function)

Function $C: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ with $C(A)=0 \Longleftrightarrow A=\emptyset$

- β - $\mathrm{BB}(\beta$-Budget-Balance, with $0 \leq \beta \leq 1)$:

$$
\beta \cdot C(Q(\mathbf{b})) \leq \sum_{i \in[n]} x_{i}(\mathbf{b}) \leq O P T(Q(\mathbf{b}))
$$

A Cost-Sharing Scenario

Computing center with large cluster of parallel machines

- Offering customers (uninterrupted) processing times
- Cost proportional to makespan

Makespan $(\{1,2,3,4,5\})=6$

Implications of GSP

GSP is a very strong requirement:

- Even coalitions with binding agreements should have no incentive to cheat

Theorem (Moulin, 1999)
Let $(Q \times x)$ be a GSP cost-sharing mechanism, $\mathbf{b}, \mathbf{b}^{\prime} \in \mathbb{R}_{>0}^{n}$ bid vectors with $Q(\mathbf{b})=Q\left(\mathbf{b}^{\prime}\right)$. Then $x_{i}(\mathbf{b})=x_{i}\left(\mathbf{b}^{\prime}\right)$ for all $i \in[n]$.

Hence, GSP (with standard assumptions NPT, VP, CS*) implies:

- Payments independent of bids
- Bids only determine set of serviced players

Cost-Sharing Methods

Last theorem gives rise to:
Definition (n-Player Cost-Sharing Method)
Function $\xi: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}^{n}$.
ξ is cross-monotonic if $\forall A, B \subseteq[n]$ and $\forall i \in A: \xi_{i}(A) \geq \xi_{i}(A \cup B)$
Note:

- β-Budget-balance defined as before:

$$
\forall A \subseteq[n]: \beta \cdot C(A) \leq \sum_{i \in[n]} \xi_{i}(A) \leq O P T(A)
$$

Moulin Mechanisms

Algorithm $M_{\xi}: \mathbb{R}_{\geq 0}^{n} \rightarrow 2^{[n]} \times \mathbb{R}^{n}$ (Moulin, 1999) Input: $\mathbf{b} \in \mathbb{R}_{\geq 0}^{n} ;$ Output: $Q \in 2^{[n]}, \mathrm{x} \in \mathbb{R}^{n}$
1: $Q:=[n]$
2: while $\exists i \in Q: b_{i}<\xi_{i}(Q)$ do $Q:=\left\{i \in Q \mid b_{i} \geq \xi_{i}(Q)\right\}$
3: $\mathrm{x}:=\xi(Q)$

Theorem (Moulin, 1999)

M_{ξ} satisfies GSP and β-BB if ξ is cross-monotonic and $\beta-B B$.

Submodular Cost Functions

Definition (Submodular Cost-Function)

Cost function $C: 2^{[n]} \rightarrow \mathbb{R} \geq 0$ where for all $A \subseteq B \subseteq[n]$ and $i \notin B$

$$
C(A \cup\{i\})-C(A) \geq C(B \cup\{i\})-C(B) .
$$

Complete characterization when C submodular:
Theorem (Moulin, 1999)
Any GSP and 1-BB mechanism has cross-monotonic cost-shares.
A 1-BB cross-monotonic ξ exists. Hence, M_{ξ} is GSP and 1-BB.
Submodular seems natural ("marginal costs only decrease"), but:

- Example: makespan scheduling

$$
\begin{aligned}
& C([1])=1, C([2])=1, \\
& C([3])=1, C([4])=2
\end{aligned}
$$

Previous Research

Good BB. Examples for cross-monotonic cost-sharing methods:

Authors	Problem	β^{-1}
Jain, Vazirani (2001)	MST	1
Pál, Tardos (2003)	Steiner tree, TSP	2
	Facility location	3
Gupta et. al. (2003)	Single-Source-Rent-or-Buy	15
Könemann et. al. (2005)	Single-Source-Rent-or-Buy	4.6
Bleischwitz, Monien (2006)	Steiner forest	2

A Note on Modeling Assumptions

Recall:

- CS: $\exists b_{i}^{+} \in \mathbb{R}_{\geq 0}: \forall \mathbf{b} \in \mathbb{R}_{\geq 0}^{n}:\left(b_{i} \geq b_{i}^{+} \Longrightarrow i \in Q(\mathbf{b})\right)$
- CS*: CS and also $\forall \mathbf{b} \in \mathbb{R}_{\geq 0}^{n}:\left(b_{i}=0 \Longrightarrow i \notin Q(\mathbf{b})\right)$

Trivial GSP, 1-BB mechanism if only CS (Immorlica et. al., 2005):

- "Taking a fixed order, find $1^{\text {st }}$ agent who can pay for the rest"

Even stronger than CS*:

- NFR (No Free Riders):

$$
i \in Q(\mathbf{b}) \Longrightarrow x_{i}(\mathbf{b})>0
$$

Symmetric Costs

With CS*, it is much harder to achieve GSP and good BB.
Does symmetry of costs help? That is, for $A, B \subseteq[n]$ we have

$$
|A|=|B| \Longrightarrow C(A)=C(B)
$$

We define $c:[n] \rightarrow \mathbb{R}_{\geq 0}, c(i):=C([i])$ in this case.
Our results (not discussed in this talk):

- We give a general GSP, 1-BB mechanism for 3 or less players
- There is a 4-player symmetric cost function for which no GSP, 1-BB mechanism exists

The Power of Two Prices

Bleischwitz, Monien (2006): For makespan costs (weights or machines identical), cross-monotonic methods are no better than $\frac{m+1}{2 m}-\mathrm{BB}$ in general

- Is there a mechanism that is better than Moulin here? (Recall: Makespan is not submodular function)
- Is it a generic mechanism?

Yes,

if the cost function is symmetric.

Cost-Sharing Forms (1/2)

- Preference order. Cost vectors $\xi^{j} \in \mathbb{R}_{\geq 0}^{j}$, $j \in[n]$, such that for $i \in[n], A \subseteq[n]$:

- At most 2 different cost-shares for any set of players $A \subseteq[n]$

Definition (Cost-Sharing Form)

Consists of: Sequence $\left(a_{k}, \lambda_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}_{>0}^{2}$, mappings $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, $f: \mathbb{N} \rightarrow \mathbb{N}_{0}$

A cost-sharing form defines cost vectors $\xi^{i}, i \in \mathbb{N}$:

$$
\xi^{i}=(\underbrace{\lambda_{\sigma(i)}, \ldots, \lambda_{\sigma(i)}}_{f(i) \text { elements }}, a_{\sigma(i)}, \ldots, a_{\sigma(i)})
$$

Cost-Sharing Forms (2/2)

Recall: A cost-sharing form defines cost vectors $\xi^{i}, i \in \mathbb{N}$:

$$
\xi^{i}=(\underbrace{\lambda_{\sigma(i)}, \ldots, \lambda_{\sigma(i)}}_{f(i) \text { elements }}, a_{\sigma(i)}, \ldots, a_{\sigma(i)})
$$

Valid cost-sharing form:

- $\sigma(i+1) \in\{\sigma(i), \sigma(i)+1\}$
- $\sigma(i+1)=\sigma(i)+1$ $\Longrightarrow f(i+1)=0$
- $f(1)=0$
- $f(i+1) \leq f(i)+1$
- $\lambda_{k} \geq a_{k} \geq a_{k-1}$

Example:

i	$f(i)$	$\sigma(i)$	ξ^{i}
1	0	1	(2)
2	0	1	$(2,2)$
3	1	1	$(3,2,2)$
4	2	1	$(3,3,2,2)$
5	0	2	$(1,1,1,1,1)$
6	1	2	$(5,1,1,1,1,1)$

σ induces segments: Ranges of cardinalities with same cost-shares!

The New Two-Prices Mechanism: Ideas

Choose correct segment k

- Find max. $j \in[n]$ such that j players bid $\geq a_{\sigma(j)}$; Set $k:=\sigma(j)$
- Reject all players $i \in[n]$ with $b_{i}<a_{k}$

Cost-sharing policy when j in segment k, i.e., $\sigma(j)=k$

- $\xi^{j}=(\underbrace{\lambda_{k}, \ldots, \lambda_{k}}_{f(j)}, \underbrace{a_{k}, \ldots, a_{k}}_{j-f(j) \text { players }})$; recall: $\lambda_{k} \geq a_{k}$

Serve as many players for a_{k} as possible

- Handling indifferent players (i.e., $b_{i}=a_{k}$) optimizes other players' utilities
- If necessary: Least preferred agents have to pay λ_{k}

Intuition:

- Serving least preferred player for λ_{k} never hurts others because

$$
f(i+1) \leq f(i)+1
$$

The New Two-Prices Mechanism: Formal Algorithm

Two-Prices Mechanism

```
Input: \(\mathbf{b}\); Output: \(Q \in 2^{[n]}, \mathrm{x} \in \mathbb{R}^{n}\)
    1: \(k:=\max \left\{i \in[n]| |\left\{j \in[n] \mid b_{j} \geq a_{\sigma(i)}\right\} \mid \geq i\right\} \cup\{0\}\)
    : if \(k=0\) then \((Q, x):=(\emptyset, 0)\); return
    3: \(H:=\emptyset ; L:=\left\{i \in[n] \mid b_{i} \geq a_{k}\right\}\)
    4: \(\nu:=\left|\left\{i \in[n] \mid b_{i}=a_{k}\right\}\right|\)
    5: loop
    6: \(\quad q:=\max \{q \in[|H|+|L|]|f(q)=|H|\}\)
    7: \(\quad\) if \(q \geq|H|+|L|-\nu\) then
    8: \(\quad S:=\left\{i \in N \mid b_{i}>a_{k}\right\}\)
    9: \(\quad L:=S \cup\left\{q-|H|-|S|\right.\) largest elements \(i\) of \(L\) with \(\left.b_{i}=a_{k}\right\}\)
10: break
11: else
    if \(b_{\min } L \geq \lambda_{k}\) then \(H:=H \cup\{\min L\}\)
        else if \(b_{\text {min }} L=a_{k}\) then \(\nu:=\nu-1\)
        \(L:=L \backslash\{\min L\}\)
15: \(Q:=H \cup L ; x:=\xi(Q)\)
```


The New Two-Prices Mechanism: Example

Algorithm (for computing the Two-Prices Mechanism)

1: Find max. $j \in[n]$ such that j players bid $\geq a_{\sigma(j)}$; Set $k:=\sigma(j)$
2: Reject all players $i \in[n]$ with $b_{i}<a_{k}$
3: loop
4: If possible: Include remaining agents for a_{k} by rejecting indifferent agents, then stop
5: Else: Least preferred agent is included for λ_{k} or is rejected
Example for $\mathbf{b}=\left(\frac{5}{2}, 3,3,2,0,0\right)$:

- $a_{k}=2$, reject agents 5, 6
- only agent 4 is indifferent
- Can't include 1,2,3 even w/o 4
- Reject agent 1 because

$$
\frac{5}{2}=b_{i}<\lambda_{k}=3
$$

i	$f(i)$	$\sigma(i)$	ξ^{i}
1	0	1	(2)
2	0	1	$(2,2)$
3	1	1	$(3,2,2)$
4	2	1	$(3,3,2,2)$
5	0	2	$(1,1,1,1,1)$
6	1	2	$(5,1,1,1,1,1)$

- Include 2,3 by rejecting 4

Two-Prices Mechanism is GSP

Theorem

The two-prices menchanism is GSP and NFR.
Proof (Sketch). Let $v \in \mathbb{R}_{\geq 0}^{n}$ be true valuation vector, $\mathbf{b} \in \mathbb{R}_{\geq 0}^{n}$ other bid vector and $K \subseteq[n]$ such that $\mathbf{b}_{-K}=\mathbf{v}_{-K}$. We show:

$$
\exists i \in K: u_{i}\left(v_{-K}, \mathrm{~b}_{K}\right)>u_{i}(\mathrm{v}) \Longrightarrow \exists j \in K: u_{j}\left(\mathrm{v}_{-K}, \mathrm{~b}_{K}\right)<u_{j}(\mathrm{v})
$$

Outline of proof:

- Do not need to consider $\sigma(|Q(\mathbf{b})|) \neq \sigma(|Q(\mathrm{v})|)$
- Assumptions imply: $x_{i}(\mathrm{v}) \in\left\{0, \lambda_{k}\right\}$, but $x_{i}(\mathrm{~b})=a_{k}$
- Only two options:
- $\exists j \in[i]: b_{j} \geq \lambda_{k}>v_{j}$ or
- $\exists j \in\{i+1, \ldots, n\}: b_{j} \leq a_{k}<v_{j}$

It follows that $j \in K$ and $u_{j}(b)<u_{j}(v)$

A Two-Price Cost-Sharing Form for Subadditive Costs C is subadditive if $\forall A, B \subseteq[n], C(A \cup B) \leq C(A)+C(B)$.

Algorithm (for computing makespan cost-sharing form)
Input: $c:[n] \rightarrow \mathbb{R}_{\geq 0} ;$ Output: $\left(a_{k}, \lambda_{k}\right), \sigma: \mathbb{N} \rightarrow \mathbb{N}, f: \mathbb{N} \rightarrow \mathbb{N}_{0}$
$1: r:=0 ; a_{1}:=\infty$
2: for $i:=1, \ldots, n$ do
3: \quad if $\frac{c(i)}{i} \leq a_{r}$ then $r:=r+1 ; a_{r}:=\frac{c(i)}{i} ; f(i):=0$
4: else
5: \quad if $f(i-1)=0$ and $i \cdot a_{r}<\frac{3}{4} \cdot c(i)$ then $\lambda_{r}:=\frac{c(i)}{4}$
6: \quad if λ_{r} still undefined then $f(i):=0$
7: else
8: $\quad f(i):=\max \left\{j \in[f(i-1)+1]_{0} \mid \lambda_{r} \cdot j+(i-j) \cdot a_{r} \leq\right.$ $c(i)\}$
9: $\quad \sigma(i):=r$

Scheduling Example

Algorithm:

i	$c(i)$	$\sigma(i)$	$a_{\sigma(i)}$	$\lambda_{\sigma(i)}$	$f(i)$
1	1	1	$c(1)=1$	-	0
2	1	2	$\frac{c(2)}{2}=\frac{1}{2}$	-	0
3	1	3	$\frac{c(3)}{3}=\frac{1}{3}$	-	0
4	2	3	-	$\frac{1}{4} \cdot c(4)=\frac{1}{2}$	1

Cost Vectors:

ξ^{i}
(1)
$\left(\frac{1}{2}, \frac{1}{2}\right)$
$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
$\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Consider $i=4$:

- $\frac{c(4)}{4}=\frac{1}{2}>\frac{1}{3}=a_{\sigma(3)}$. Hence, $\sigma(4)=\sigma(3)$.
- Furthermore, $4 \cdot \frac{1}{3}=\frac{4}{3}<\frac{3}{4} \cdot c(4)=\frac{3}{2}$. Hence, $\lambda_{\sigma(4)}=\frac{1}{4} \cdot c(4)$

Optimal Makespan:

Budget-Balance

Theorem

The two-price cost-sharing mechanism used with a cost-sharing form computed for subadditive costs is $\frac{3}{4}-B B$ and NFR.

Proof (Idea).

- GSP: Follows from before
- NFR: By the algorithm, $\forall i \in[n]: a_{\sigma(i)}>0$
- BB: Use: c non-decreasing and subadditive
$\frac{3}{4}$ is the best to expect from any valid cost-sharing form:

Theorem

$\forall \varepsilon \in\left(0, \frac{1}{4}\right]$, there are scheduling instances (identical jobs and machines) for which no $\left(\frac{3}{4}+\varepsilon\right)-B B$ cost-sharing form exists.

Conclusion and Further Research (1/2)

Motivation:

- Mechanism Design: Align players' incentives to global objective

New results presented in this talk:

- Generic GSP mechanism without free riders (symmetric costs)
- β - BB if the underlying cost-sharing form is β - BB
- Application: Makespan mechanisms (identical jobs)
- Best-known BB improved from $\frac{m+1}{2 m}$ to $\frac{3}{4}$
- Best our new technique can yield in general
- For ≥ 4 players, symmetry of costs not sufficient for existence of 1-BB, GSP mechanism
- For ≤ 3 players, symmetry is sufficient!

Conclusion and Further Research (2/2)

Lots of open questions:

- Generalize the approach
- What is the best budget balance factor for scheduling?
- Bringing in efficiency: Trade-Offs
- Other applications than schedling

Thank you for your attention!

