State of the Art

The Power of Two Prices

Conclusion

The Power of Two Prices: Beyond Cross-Monotonicity Incentive-Compatible Mechanism Design

Yvonne Bleischwitz Burkhard Monien Florian Schoppmann Karsten Tiemann

Department of Computer Science

University of Paderborn

March 27, 2007

Mar 27, 2007 · 1 / 24

Cost-Sharing ●000	State of the Art 0000000	The Power of Two Prices	Conclusion
The Model			

The Model

- $n \in \mathbb{N}$ players:
 - ▶ Have private valuations $v_i \in \mathbb{R}_{\geq 0}$ for service, $\mathbf{v} := (v_i)_{i \in [n]}$
 - ▶ Submit bids $b_i \in \mathbb{R}_{\geq 0}$ to service provider, $\mathbf{b} := (b_i)_{i \in [n]}$
- Service provider uses mechanism to determine outcome:

• Desirable that $\mathbf{b} = \mathbf{v}$ but this cannot be a priori guaranteed

Common Assumptions for Cost-Sharing Mechanisms

Only consider mechanisms with the following properties $\forall i \in [n]$:

NPT (No Positive Transfer) = no negative payments:

$x_i(\mathbf{b}) \geq 0$

VP (Voluntary Participation) = obey bids:

 $x_i(\mathbf{b}) \leq b_i$

► CS* (Strict Consumer Sovereignty):
CS:
$$\exists b_i^+ \in \mathbb{R}_{\geq 0} : \forall \mathbf{b} \in \mathbb{R}_{\geq 0}^n : (b_i \geq b_i^+ \Longrightarrow i \in Q(\mathbf{b}))$$

Strictness: $\forall \mathbf{b} \in \mathbb{R}_{\geq 0}^n : (b_i = 0 \Longrightarrow i \notin Q(\mathbf{b}))$

Assume: **v** is true valuation vector, $(Q \times x)$ mechanism

Player i's utility depends on bid vector:

$$u_i(\mathbf{b}) := egin{cases} v_i - x_i(\mathbf{b}) & ext{if } i \in Q(\mathbf{b}) \ 0 & ext{if } i \notin Q(\mathbf{b}) \end{cases}$$

Cost-Sl	haring
0000	

Desirable Properties of Cost-Sharing Mechanisms

- **GSP** (Group-Strategyproofness):
 - \forall true valuations $\mathbf{v} \in \mathbb{R}^n_{\geq 0}$: \nexists coalition $K \subseteq [n]$ such that
 - \exists cheating possibility $\boldsymbol{b}_{\mathcal{K}} \in \mathbb{R}_{\geq 0}^{\mathcal{K}}$ with
 - $u_i(\mathbf{v}_{-\kappa}, \mathbf{b}_{\kappa}) \geq u_i(\mathbf{v})$ for all $i \in K$ and
 - $u_i(\mathbf{v}_{-K}, \mathbf{b}_K) > u_i(\mathbf{v})$ for at least one $i \in K$.

SP: Needs to hold only for coalitions K of size 1

Definition (*n*-Player Cost Function)

Function
$$C: 2^{[n]} \to \mathbb{R}_{\geq 0}$$
 with $C(A) = 0 \iff A = \emptyset$

• β -BB (β -Budget-Balance, with $0 \le \beta \le 1$):

$$eta \cdot C(Q(\mathbf{b})) \leq \sum_{i \in [n]} x_i(\mathbf{b}) \leq OPT(Q(\mathbf{b}))$$

State of the Art

The Power of Two Prices

Conclusion

A Cost-Sharing Scenario

Computing center with large cluster of parallel machines

- Offering customers (uninterrupted) processing times
- Cost proportional to makespan

State of the Art

The Power of Two Prices

Conclusion

Implications of GSP

GSP is a very strong requirement:

 Even coalitions with binding agreements should have no incentive to cheat

Theorem (Moulin, 1999)

Let $(Q \times x)$ be a GSP cost-sharing mechanism, $\mathbf{b}, \mathbf{b}' \in \mathbb{R}^n_{\geq 0}$ bid vectors with $Q(\mathbf{b}) = Q(\mathbf{b}')$. Then $x_i(\mathbf{b}) = x_i(\mathbf{b}')$ for all $i \in [n]$.

Hence, GSP (with standard assumptions NPT, VP, CS*) implies:

- Payments independent of bids
- Bids only determine set of serviced players

State of the Art

The Power of Two Prices

Conclusion

Cost-Sharing Methods

Last theorem gives rise to:

Definition (*n*-Player Cost-Sharing Method)

Function $\xi: 2^{[n]} \to \mathbb{R}^n_{\geq 0}$.

 ξ is cross-monotonic if $\forall A, B \subseteq [n]$ and $\forall i \in A : \xi_i(A) \ge \xi_i(A \cup B)$

Note:

β-Budget-balance defined as before:

$$\forall A \subseteq [n] : \beta \cdot C(A) \leq \sum_{i \in [n]} \xi_i(A) \leq OPT(A)$$

Cost-Sharing	
0000	

State of the Art

The Power of Two Prices

Conclusion

Moulin Mechanisms

Algorithm $M_{\xi} : \mathbb{R}_{\geq 0}^n \to 2^{[n]} \times \mathbb{R}^n$ (Moulin, 1999) Input: $\mathbf{b} \in \mathbb{R}_{\geq 0}^n$; Output: $Q \in 2^{[n]}$, $\mathbf{x} \in \mathbb{R}^n$ 1: Q := [n]2: while $\exists i \in Q$: $b_i < \xi_i(Q)$ do $Q := \{i \in Q \mid b_i \ge \xi_i(Q)\}$ 3: $\mathbf{x} := \xi(Q)$

Theorem (Moulin, 1999)

 M_{ξ} satisfies GSP and β -BB if ξ is cross-monotonic and β -BB.

State of the Art

The Power of Two Prices

Conclusion

Submodular Cost Functions

Definition (Submodular Cost-Function)

Cost function $C : 2^{[n]} \to \mathbb{R}_{\geq 0}$ where for all $A \subseteq B \subseteq [n]$ and $i \notin B$ $C(A \cup \{i\}) - C(A) \geq C(B \cup \{i\}) - C(B).$

Complete characterization when *C* submodular:

Theorem (Moulin, 1999)

Any GSP and 1-BB mechanism has cross-monotonic cost-shares. A 1-BB cross-monotonic ξ exists. Hence, M_{ξ} is GSP and 1-BB.

Submodular seems natural ("marginal costs only decrease"), but:

Example: makespan scheduling C([1]) = 1, C([2]) = 1, C([3]) = 1, C([4]) = 2

State of the Art

The Power of Two Prices

Conclusion

Previous Research

Good BB. Examples for cross-monotonic cost-sharing methods:

Authors	Problem	β^{-1}
Jain, Vazirani (2001)	MST	1
	Steiner tree, TSP	2
Pál, Tardos (2003)	Facility location	3
	Single-Source-Rent-or-Buy	15
Gupta et. al. (2003)	Single-Source-Rent-or-Buy	4.6
Könemann et. al. (2005)	Steiner forest	2
Bleischwitz, Monien (2006)	Scheduling on <i>m</i> links	$\frac{2m}{m+1}$

.

A Note on Modeling Assumptions

Recall:

▶ CS: $\exists b_i^+ \in \mathbb{R}_{\geq 0}$: $\forall \mathbf{b} \in \mathbb{R}_{\geq 0}^n$: $(b_i \geq b_i^+ \Longrightarrow i \in Q(\mathbf{b}))$ ▶ CS*: CS and also $\forall \mathbf{b} \in \mathbb{R}_{\geq 0}^n$: $(b_i = 0 \Longrightarrow i \notin Q(\mathbf{b}))$

Trivial GSP, 1-BB mechanism if only CS (Immorlica et. al., 2005):

 \blacktriangleright "Taking a fixed order, find 1st agent who can pay for the rest"

Even stronger than CS*:

▶ NFR (No Free Riders):

$$i \in Q(\mathbf{b}) \Longrightarrow x_i(\mathbf{b}) > 0$$

Mar 27, 2007 · 11 / 24

State of the Art

The Power of Two Prices

Conclusion

Symmetric Costs

With CS*, it is much harder to achieve GSP and good BB.

Does symmetry of costs help? That is, for $A, B \subseteq [n]$ we have

$$|A| = |B| \Longrightarrow C(A) = C(B).$$

We define $c : [n] \to \mathbb{R}_{\geq 0}$, c(i) := C([i]) in this case.

Our results (not discussed in this talk):

- ► We give a general GSP, 1-BB mechanism for 3 or less players
- There is a 4-player symmetric cost function for which no GSP, 1-BB mechanism exists

University of Paderborn - Burkhard Monien

Mar 27, 2007 · 12 / 24

The Power of Two Prices

Bleischwitz, Monien (2006): For makespan costs (weights or machines identical), cross-monotonic methods are no better than $\frac{m+1}{2m}$ -BB in general

- Is there a mechanism that is better than Moulin here? (Recall: Makespan is not submodular function)
- Is it a generic mechanism?

Yes

if the cost function is symmetric.

Mar 27, 2007 · 13 / 24

State of the Art

The Power of Two Prices

Conclusion

Cost-Sharing Forms (1/2)

- ▶ Preference order. Cost vectors $\boldsymbol{\xi}^{j} \in \mathbb{R}^{J}_{\geq 0}$, $j \in [n]$, such that for $i \in [n]$, $A \subseteq [n]$:
 - $\xi_i(A) := egin{cases} \xi_i^{|A|} & ext{if } i \in A \ 0 & ext{otherwise.} \end{cases}$

• At most 2 different cost-shares for any set of players $A \subseteq [n]$

Definition (Cost-Sharing Form)

Consists of: Sequence $(a_k, \lambda_k)_{k \in \mathbb{N}} \subset \mathbb{R}^2_{>0}$, mappings $\sigma : \mathbb{N} \to \mathbb{N}$, $f : \mathbb{N} \to \mathbb{N}_0$

A cost-sharing form defines cost vectors $\boldsymbol{\xi}^i$, $i \in \mathbb{N}$:

$$\boldsymbol{\xi}^{i} = (\underbrace{\lambda_{\sigma(i)}, \dots, \lambda_{\sigma(i)}}_{f(i) \text{ elements}}, \boldsymbol{a}_{\sigma(i)}, \dots, \boldsymbol{a}_{\sigma(i)})$$

State of the Art

The Power of Two Prices

Conclusion

Cost-Sharing Forms (2/2)

Recall: A cost-sharing form defines cost vectors $\boldsymbol{\xi}^i$, $i \in \mathbb{N}$:

$$\boldsymbol{\xi}^{i} = (\underbrace{\lambda_{\sigma(i)}, \ldots, \lambda_{\sigma(i)}}_{f(i) \text{ elements}}, \boldsymbol{a}_{\sigma(i)}, \ldots, \boldsymbol{a}_{\sigma(i)})$$

Valid cost-sharing form:

Example:

► $\sigma(i+1) \in \{\sigma(i), \sigma(i)+1\}$
$\blacktriangleright \ \sigma(i+1) = \sigma(i) + 1$
$\implies f(i+1) = 0$
▶ $f(1) = 0$
► $f(i+1) \leq f(i) + 1$
$\blacktriangleright \lambda_k \geq a_k \geq a_{k-1}$

i	f(i)	$\sigma(i)$	ξ ⁱ
1	0	1	(2)
2	0	1	(2, <mark>2</mark>)
3	1	1	(3, 2, <mark>2</mark>)
4	2	1	(3, 3, 2, <mark>2</mark>)
5	0	2	(1, 1, 1, 1, 1)
6	1	2	(5, 1, 1, 1, 1, 1)

 σ induces segments: Ranges of cardinalities with same cost-shares!

The New Two-Prices Mechanism: Ideas

Choose correct segment k

- Find max. $j \in [n]$ such that j players bid $\geq a_{\sigma(j)}$; Set $k := \sigma(j)$
- Reject all players $i \in [n]$ with $b_i < a_k$

Cost-sharing policy when j in segment k, i.e., $\sigma(j) = k$

►
$$\xi^j = (\underbrace{\lambda_k, \dots, \lambda_k}_{f(j)}, \underbrace{a_k, \dots, a_k}_{j-f(j) \text{ players}}); \text{ recall: } \lambda_k \ge a_k$$

Serve as many players for a_k as possible

- Handling indifferent players (i.e., b_i = a_k) optimizes other players' utilities
- If necessary: Least preferred agents have to pay λ_k

Intuition:

• Serving least preferred player for λ_k never hurts others because $f(i+1) \leq f(i) + 1$

The New Two-Prices Mechanism: Formal Algorithm

Two-Prices Mechanism

```
Input: b; Output: Q \in 2^{[n]}, \mathbf{x} \in \mathbb{R}^n
  1: k := \max \left\{ i \in [n] \mid |\{j \in [n] \mid b_j \ge a_{\sigma(i)}\}| \ge i \right\} \cup \{0\}
  2: if k = 0 then (Q, \mathbf{x}) := (\emptyset, 0); return
  3: H := \emptyset; L := \{i \in [n] \mid b_i > a_k\}
  4: \nu := |\{i \in [n] \mid b_i = a_k\}|
  5: loop
           q := \max\{q \in [|H| + |L|] \mid f(q) = |H|\}
  6.
          if q > |H| + |L| - \nu then
  7.
                S := \{i \in N \mid b_i > a_k\}
  8:
                L := S \cup \{q - |H| - |S| \text{ largest elements } i \text{ of } L \text{ with } b_i = a_k\}
  9:
                break
 10.
           else
 11.
                if b_{\min L} \geq \lambda_k then H := H \cup \{\min L\}
 12:
                else if b_{\min L} = a_k then \nu := \nu - 1
 13:
                L := L \setminus \{\min L\}
 14.
 15: Q := H \cup L; x := \xi(Q)
```

The New Two-Prices Mechanism: Example

Algorithm (for computing the Two-Prices Mechanism)

- 1: Find max. $j \in [n]$ such that j players bid $\geq a_{\sigma(j)}$; Set $k := \sigma(j)$
- 2: Reject all players $i \in [n]$ with $b_i < a_k$
- 3: **loop**
- If possible: Include remaining agents for a_k by rejecting indifferent agents, then stop

5: Else: Least preferred agent is included for λ_k or is rejected

Example for $\mathbf{b} = (\frac{5}{2}, 3, 3, 2, 0, 0)$:

- $a_k = 2$, reject agents 5, 6
- only agent 4 is indifferent
- Can't include 1,2,3 even w/o 4
- Reject agent 1 because $\frac{5}{2} = b_i < \lambda_k = 3$

► Include 2,3 by rejecting 4 University of Paderborn · Burkhard Monien

i	f(i)	$\sigma(i)$	ξ ⁱ
1	0	1	(2)
2	0	1	(2,2)
3	1	1	(3, 2, 2)
4	2	1	(3, 3, 2, 2)
5	0	2	(1, 1, 1, 1, 1)
6	1	2	(5, 1, 1, 1, 1, 1)

The Power of Two Prices

Conclusion

Two-Prices Mechanism is GSP

Theorem

The two-prices menchanism is GSP and NFR.

Proof (Sketch). Let $\mathbf{v} \in \mathbb{R}_{\geq 0}^n$ be true valuation vector, $\mathbf{b} \in \mathbb{R}_{\geq 0}^n$ other bid vector and $K \subseteq [n]$ such that $\mathbf{b}_{-K} = \mathbf{v}_{-K}$. We show:

$$\exists i \in \mathcal{K} : u_i(\mathbf{v}_{-\mathcal{K}}, \mathbf{b}_{\mathcal{K}}) > u_i(\mathbf{v}) \Longrightarrow \exists j \in \mathcal{K} : u_j(\mathbf{v}_{-\mathcal{K}}, \mathbf{b}_{\mathcal{K}}) < u_j(\mathbf{v})$$

Outline of proof:

- ► Do not need to consider $\sigma(|Q(\mathbf{b})|) \neq \sigma(|Q(\mathbf{v})|)$
- Assumptions imply: $x_i(\mathbf{v}) \in \{0, \lambda_k\}$, but $x_i(\mathbf{b}) = a_k$
- Only two options:
 - $\exists j \in [i] : b_j \ge \lambda_k > v_j$ or
 - $\exists j \in \{i+1,\ldots,n\} : b_j \leq a_k < v_j$

It follows that $j \in K$ and $u_j(\mathbf{b}) < u_j(\mathbf{v})$

A Two-Price Cost-Sharing Form for Subadditive Costs

C is subadditive if $\forall A, B \subseteq [n], C(A \cup B) \leq C(A) + C(B)$.

Algorithm (for computing makespan cost-sharing form) Input: $c : [n] \to \mathbb{R}_{>0}$; Output: $(a_k, \lambda_k), \sigma : \mathbb{N} \to \mathbb{N}, f : \mathbb{N} \to \mathbb{N}_0$ 1: r := 0: $a_1 := \infty$ 2: for i := 1, ..., n do if $\frac{c(i)}{i} < a_r$ then r := r + 1; $a_r := \frac{c(i)}{i}$; f(i) := 03: else 4: if f(i-1) = 0 and $i \cdot a_r < \frac{3}{4} \cdot c(i)$ then $\lambda_r := \frac{c(i)}{4}$ 5: if λ_r still undefined then f(i) := 06: else 7: $f(i) := \max\{i \in [f(i-1)+1]_0 \mid \lambda_r \cdot i + (i-i) \cdot a_r < i\}$ 8: c(i) $\sigma(i) := r$ 9:

Cost-Sharing	
0000	

State of the Art

The Power of Two Prices

Conclusion

Scheduling Example

	Algor	rithm:				Cost Vectors:
i	c(i)	$\sigma(i)$	$a_{\sigma(i)}$	$\lambda_{\sigma(i)}$	f(i)	ξ ⁱ
1	1	1	c(1) = 1	_	0	(1)
2	1	2	$\frac{c(2)}{2} = \frac{1}{2}$	_	0	$\left(\frac{1}{2},\frac{1}{2}\right)$
3	1	3	$\frac{c(3)}{3} = \frac{1}{3}$	_	0	$\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$
4	2	3	_	$\tfrac{1}{4} \cdot c(4) = \tfrac{1}{2}$	1	$\left(\tfrac{1}{2}, \tfrac{1}{3}, \tfrac{1}{3}, \tfrac{1}{3}\right)$

Consider i = 4:

- $\frac{c(4)}{4} = \frac{1}{2} > \frac{1}{3} = a_{\sigma(3)}$. Hence, $\sigma(4) = \sigma(3)$.
- ► Furthermore, $4 \cdot \frac{1}{3} = \frac{4}{3} < \frac{3}{4} \cdot c(4) = \frac{3}{2}$. Hence, $\lambda_{\sigma(4)} = \frac{1}{4} \cdot c(4)$

Optimal Makespan:

Cost-Sharin	g
0000	

State of the Art

The Power of Two Prices

Conclusion

Budget-Balance

Theorem

The two-price cost-sharing mechanism used with a cost-sharing form computed for subadditive costs is $\frac{3}{4}$ -BB and NFR.

Proof (Idea).

- GSP: Follows from before
- ▶ NFR: By the algorithm, $\forall i \in [n] : a_{\sigma(i)} > 0$
- BB: Use: *c* non-decreasing and subadditive

 $\frac{3}{4}$ is the best to expect from any valid cost-sharing form:

Theorem

 $\forall \varepsilon \in (0, \frac{1}{4}]$, there are scheduling instances (identical jobs and machines) for which no $(\frac{3}{4} + \varepsilon)$ -BB cost-sharing form exists.

Conclusion

Conclusion and Further Research (1/2)

Motivation:

► Mechanism Design: Align players' incentives to global objective

New results presented in this talk:

- ► Generic GSP mechanism without free riders (symmetric costs)
- β -BB if the underlying cost-sharing form is β -BB
- Application: Makespan mechanisms (identical jobs)
 - Best-known BB improved from $\frac{m+1}{2m}$ to $\frac{3}{4}$
 - Best our new technique can yield in general
- ► For ≥ 4 players, symmetry of costs not sufficient for existence of 1-BB, GSP mechanism
- ▶ For ≤ 3 players, symmetry is sufficient!

Conclusion

Conclusion and Further Research (2/2)

Lots of open questions:

- Generalize the approach
- What is the best budget balance factor for scheduling?
- Bringing in efficiency: Trade-Offs
- Other applications than schedling

Thank you for your attention!

Mar 27, 2007 · 24 / 24