Finding Nash Equilibria in Certain Classes of 2-Player Game

Adrian Vetta

McGill University

Introduction

Introduction

Finding a Nash equilibrium (NE) is hard.

Introduction

Finding a Nash equilibrium (NE) is hard.

- In multiplayer games.
(Daskalakis, Goldberg and Papadimitriou 2006)

Introduction

Finding a Nash equilibrium (NE) is hard.

- In multiplayer games.
(Daskalakis, Goldberg and Papadimitriou 2006)
- In 2-player games.

Introduction

Finding a Nash equilibrium (NE) is hard.

- In multiplayer games.
(Daskalakis, Goldberg and Papadimitriou 2006)
o In 2-player games.
(Chen and Deng 2006)
o In win-lose games.
(Abbott, Kane and Valiant 2005)

Introduction

Finding a Nash equilibrium (NE) is hard.

O In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006)

- In 2-player games.
(Chen and Deng 2006)
- In win-lose games.
(Abbott, Kane and Valiant 2005)

Are there general classes of game in which finding a $N E$ is easier?

Our Results

Our Results

Random Games

There is a algorithm for finding a NE in a random 2-player game which runs in polytime with high probability.

Our Results

Random Games

There is a algorithm for finding a NE in a random 2-player game which runs in polytime with high probability.

Planar Win-Lose Games (Addario-Berry, Olver and Vetta 2006)

There is a polytime algorithm for finding a NE in a planar win-lose 2-player game.

Nash Equilibria

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.
$\mathbf{A}\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.
$r_{3}\left(\begin{array}{llllll} & c_{4} \\ 3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B}\left(\begin{array}{cccccc}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibrium: Alice and Bob play probability distributions p^{*} and q^{*} that are mutual best responses.

Nash Equilibria

A 2-player game in normal form is represented by two payoff matrices.

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \mathbf{B} \quad\left(\begin{array}{llllll}5 & 2 & 4 & 0 & 8 & 7 \\ 4 & 6 & 8 & 5 & 7 & 3 \\ 2 & 3 & 7 & 1 & 3 & 3 \\ 8 & 6 & 1 & 1 & 6 & 4 \\ 0 & 3 & 4 & 9 & 3 & 8 \\ 7 & 1 & 5 & 6 & 2 & 0\end{array}\right)$

- Alice plays rows and Bob plays columns.

Nash Equilibrium: Alice and Bob play probability distributions p^{*} and q^{*} that are mutual best responses.

$$
\text { - } p^{*}=\operatorname{argmax}_{p} p^{T}\left(A q^{*}\right) \text { and } q^{*}=\operatorname{argmax}_{q} q^{T}\left(B^{T} p^{*}\right)
$$

A Geometric Interpretation of PSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

A Geometric Interpretation of PSNE

$$
\text { A } \quad\left(\begin{array}{llllll}
3 & 7 & 3 & 9 & 0 & 2 \\
9 & 1 & 1 & 3 & 4 & 5 \\
7 & 4 & 6 & 2 & 8 & 0 \\
0 & 4 & 2 & 3 & 3 & 9 \\
6 & 6 & 5 & 5 & 1 & 1 \\
1 & 2 & 3 & 7 & 0 & 8
\end{array}\right)
$$

- If Bob plays column 1 then Alice plays row 2 .

A Geometric Interpretation of PSNE

$$
\begin{gathered}
c_{1} \\
r_{2}\left(\begin{array}{cccccc}
3 & 7 & 3 & 9 & 0 & 2 \\
9 & 1 & 1 & 3 & 4 & 5 \\
7 & 4 & 6 & 2 & 8 & 0 \\
0 & 4 & 2 & 3 & 3 & 9 \\
6 & 6 & 5 & 5 & 1 & 1 \\
1 & 2 & 3 & 7 & 0 & 8
\end{array}\right)
\end{gathered}
$$

- If Bob plays column 1 then Alice plays row 2.

A Geometric Interpretation of PSNE

$$
\begin{gathered}
c_{1} \\
r_{2}\left(\begin{array}{cccccc}
3 & 7 & 3 & 9 & 0 & 2 \\
9 & 1 & 1 & 3 & 4 & 5 \\
7 & 4 & 6 & 2 & 8 & 0 \\
0 & 4 & 2 & 3 & 3 & 9 \\
6 & 6 & 5 & 5 & 1 & 1 \\
1 & 2 & 3 & 7 & 0 & 8
\end{array}\right)
\end{gathered}
$$

- If Bob plays column 1 then Alice plays row 2.

Geometrically: Plot Alice's options as points in 1-D, then row 2 is an extreme point.

A Geometric Interpretation of PSNE

$$
\begin{gathered}
c_{1} \\
r_{2}\left(\begin{array}{cccccc}
3 & 7 & 3 & 9 & 0 & 2 \\
9 & 1 & 1 & 3 & 4 & 5 \\
7 & 4 & 6 & 2 & 8 & 0 \\
0 & 4 & 2 & 3 & 3 & 9 \\
6 & 6 & 5 & 5 & 1 & 1 \\
1 & 2 & 3 & 7 & 0 & 8
\end{array}\right)
\end{gathered}
$$

- If Bob plays column 1 then Alice plays row 2 .

Geometrically: Plot Alice's options as points in 1-D, then row 2 is an extreme point.

A Geometric Interpretation of MSNE

$$
\text { A }\left(\begin{array}{llllll}
3 & 7 & 3 & 9 & 0 & 2 \\
9 & 1 & 1 & 3 & 4 & 5 \\
7 & 4 & 6 & 2 & 8 & 0 \\
0 & 4 & 2 & 3 & 3 & 9 \\
6 & 6 & 5 & 5 & 1 & 1 \\
1 & 2 & 3 & 7 & 0 & 8
\end{array}\right)
$$

A Geometric Interpretation of MSNE
A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right) \quad \begin{aligned} & \\ & \text { o What if Bob plays a mixed } \\ & \text { strategy on columns } 2 \text { and } 3 ?\end{aligned}$

A Geometric Interpretation of MSNE
A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE
A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE
A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE
A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

A Geometric Interpretation of MSNE

A $\left(\begin{array}{llllll}3 & 7 & 3 & 9 & 0 & 2 \\ 9 & 1 & 1 & 3 & 4 & 5 \\ 7 & 4 & 6 & 2 & 8 & 0 \\ 0 & 4 & 2 & 3 & 3 & 9 \\ 6 & 6 & 5 & 5 & 1 & 1 \\ 1 & 2 & 3 & 7 & 0 & 8\end{array}\right)$

- What if Bob plays a mixed strategy on columns 2 and 3?

Geometrically: Alice's options are now points in 2-D.

Best Responses and Extreme Points

-

Extreme points still correspond to best responses.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Extreme Points

- Extreme points still correspond to best responses.

- Any extreme point on the anti-dominant of the convex hull is a best response to some probability distribution ($q, 1-q$) on columns 2 and 3.

Best Responses and Facets

- But then faces can also correspond to best responses.

Best Responses and Facets

- But then faces can also correspond to best responses.

Best Responses and Facets

- But then faces can also correspond to best responses.

Theorem. $\left(r_{1}, r_{5}\right)$ and $\left(c_{2}, c_{3}\right)$ form a NE if and only if
$\left(r_{1}, r_{5}\right)$ is a facet of $\mathcal{P}_{2,3}$ and $\left(c_{2}, c_{3}\right)$ is a facet of $\mathcal{P}_{1,5}$.

Random Games

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Games

In random games matrix entries are drawn independently from a distribution.

$$
\text { e.g. } U[0,1], N(0,1)
$$

So the \#NE relates to the \#facets in randomly generated polytopes.

Random Polytopes

Points are in general position.

Random Polytopes

Points are in general position.

- All NE have supports of the same size.

Random Polytopes

Points are in general position.

- All NE have supports of the same size.

Proof. Won't have $\mathrm{d}+1$ points on ($\mathrm{d}-1$)-dimensional facet.

Random Polytopes

Points are in general position.

- All NE have supports of the same size.

Random Polytopes

Points are in general position.

- All NE have supports of the same size.
- \# extreme points \leq \# facets

Random Polytopes

Points are in general position.

- All NE have supports of the same size.
- \# extreme points \leq \# facets

Proof. Each facet has d points; each extreme point is on $\geq \mathrm{d}$ facets.

Random Polytopes

Points are in general position.

- All NE have supports of the same size.
- \# extreme points \leq \# facets

The \# of Nash Equilibria

The \# of Nash Equilibria

Theorem. $\quad E(\# d \times d \mathrm{NE}) \geq E(\# \text { extreme points })^{2}$

The \# of Nash Equilibria

Theorem. $\quad E(\# d \times d \mathrm{NE}) \geq E(\# \text { extreme points })^{2}$

Proof. A set R of d rows is a best response to a set C of d columns with probability

$$
\frac{\# \text { facets }}{\binom{n}{d}}
$$

and vice versa.

The \# of Extreme Points

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

$$
H_{x}=\left\{y: \sum_{i=1}^{d} \frac{1-y_{i}}{1-x_{i}}=d\right\}
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

$$
H_{x}=\left\{y: \sum_{i=1}^{d} \frac{1-y_{i}}{1-x_{i}}=d\right\}
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

$$
H_{x}=\left\{y: \sum_{i=1}^{d} \frac{1-y_{i}}{1-x_{i}}=d\right\}
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.

$$
E(\# \text { extreme points })=n \int_{x \in \square} \operatorname{Pr}(x \text { is extreme }) f(x) d x
$$

$$
\geq n \int_{x \in \square} \operatorname{Pr}\left(H_{x} \text { separates } x\right) f(x) d x
$$

The \# of Extreme Points

Theorem. For the uniform distribution

$$
E(\# \text { extreme points }) \succeq \log ^{d-1} n
$$

Proof.
$E(\#$ extreme points $)=n \int_{x \in \boldsymbol{\square}} \operatorname{Pr}(x$ is extreme $) f(x) d x$

$$
\geq n \int_{x \in \square} \operatorname{Pr}\left(H_{x} \text { separates } x\right) f(x) d x
$$

$$
\succeq \log ^{d-1} n
$$

The \# of Nash Equilibria

The \# of Nash Equilibria

Theorem. For the uniform distribution

$$
E(\# d \times d \mathrm{NE}) \succeq \log ^{2(d-1)} n
$$

The \# of Nash Equilibria

Theorem. For the uniform distribution

$$
E(\# d \times d \mathrm{NE}) \succeq \log ^{2(d-1)} n
$$

- We expect lots of NE, even lots with 2×2 support.

The \# of Nash Equilibria

Theorem. For the uniform distribution

$$
E(\# d \times d \mathrm{NE}) \succeq \log ^{2(d-1)} n
$$

- We expect lots of NE, even lots with 2×2 support.
- But this isn't enough. We need concentration bounds.

The \# of Nash Equilibria

Theorem. For the uniform distribution

$$
E(\# d \times d \mathrm{NE}) \succeq \log ^{2(d-1)} n
$$

- We expect lots of NE, even lots with 2×2 support.
- But this isn't enough. We need concentration bounds.
- Can we show that $\operatorname{Pr}(\# d \times d \mathrm{NE}=0)$ is small?

Cap Coverings

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

- A cap is the intersection of the cube and a halfspace.

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

- A cap is the intersection of the cube and a halfspace.

Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much.

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

- A cap is the intersection of the cube and a halfspace.

Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much.

Cap Coverings

- The fraction of points on a convex hull K is

$$
E(\operatorname{vol}(\bar{K})=1-E(\operatorname{vol}(K))
$$

- A cap is the intersection of the cube and a halfspace.

Cap Covering Thm. (Bar89) \bar{K} can be closely covered by a small number of low volume caps that don't intersect much.

Concentration Bounds

Concentration Bounds

Cap coverings give concentration bounds on:

- \# extreme points
- \# faces

Concentration Bounds

Cap coverings give concentration bounds on:

- \# extreme points
- \# faces

Combinatorially. For NE we examine the probability that a set S of rows forms a facet given that
(i) A set T of rows forms a face.
(ii) We resample some of the coordinates.

A Dumb Algorithm

A Dumb Algorithm

Algorithm. Exhaustively search for $d x d$ NE; $d=I, 2, \ldots$

A Dumb Algorithm

Algorithm. Exhaustively search for dxd NE; $d=1,2, \ldots$

Theorem. The algorithm finds a NE in polytime w.h.p.

A Dumb Algorithm

Algorithm. Exhaustively search for dxd NE; $d=1,2, \ldots$

Theorem. The algorithm finds a NE in polytime w.h.p.
Proof. There is a 2 x 2 NE w.h.p. \square

Win-Lose Games

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

$$
A\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

$$
A\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Win-lose games have a bipartite, digraph representation.

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

$$
A\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Win-lose games have a bipartite, digraph representation.

$$
\begin{array}{ll}
r_{1} \bullet & \circ c_{1} \\
r_{2} \bullet & \circ c_{2} \\
r_{3} \bullet & \circ c_{3}
\end{array}
$$

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

$$
A\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Win-lose games have a bipartite, digraph representation.

Win-Lose Games

In a win-lose game the payoff matrices are 0-1.

$$
A\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad B\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Win-lose games have a bipartite, digraph representation.

Nash Equilibria

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

- Vertices r and c form a PSNE if
(i) (r, c) is an arc.
(ii) r has no in-arcs.

Nash Equilibria

In win-lose games NE can correspond to subgraphs.

- A red and blue vertex with no in-arcs form a PSNE.

- Vertices r and c form a PSNE if
(i) (r, c) is an arc.
(ii) r has no in-arcs.

Domination

Domination

- A vertex with no out-arcs is weakly dominated.

Domination

- A vertex with no out-arcs is weakly dominated.
- So if $\delta^{-}(S)=\emptyset$ then just find a NE in $G[S]$.

Domination

- A vertex with no out-arcs is weakly dominated.
- So if $\delta^{-}(S)=\emptyset$ then just find a NE in $G[S]$.

Planar Win-Lose Games

- A win-lose game is planar if it has a planar digraph representation.

Planar Win-Lose Games

- A win-lose game is planar if it has a planar digraph representation.

Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle.

Planar Win-Lose Games

- A win-lose game is planar if it has a planar digraph representation.

Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. \square

- A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C.

Planar Win-Lose Games

- A win-lose game is planar if it has a planar digraph representation.

Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. \square

- A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C.

Planar Win-Lose Games

- A win-lose game is planar if it has a planar digraph representation.

Theorem. A non-trivial, strongly connected, bipartite, planar directed graph contains an undominated induced cycle. \square

- A cycle C is undominated if no vertex in V-C has more than 1 out-neighbour on C.

Undominated Induced Cycles

But an undominated, induced cycle gives a NE.

- Alice and Bob simply play the uniform distribution on their vertices in the cycle.

Theorem. There is a polytime algorithm to find a NE in a planar win-lose games.

Open Problems

Open Problems

- Can we find a NE in a random game in expected polytime?

Open Problems

- Can we find a NE in a random game in expected polytime?
- What other classes of game have polytime algorithms?

