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Finding a Nash equilibrium (NE) is hard.

         In multiplayer games. (Daskalakis, Goldberg and Papadimitriou 2006)

In 2-player games. (Chen and Deng 2006)

In win-lose games. (Abbott, Kane and Valiant 2005)

Are there general classes of game in which finding 
a NE is easier?
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Our Results

Random Games (Barany, Vempala and Vetta 2005)

There is a algorithm for finding a NE in a random 2-player 
game which runs in polytime with high probability.

Planar Win-Lose Games (Addario-Berry, Olver and Vetta 2006)

There is a polytime algorithm for finding a NE in a planar 
win-lose 2-player game.
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5 2 4 0 8 7
4 6 8 5 7 3
2 3 7 1 3 3
8 6 1 1 6 4
0 3 4 9 3 8
7 1 5 6 2 0





A B

Alice plays rows and Bob plays columns.

Nash Equilibrium: Alice and Bob play probability 
distributions p* and q* that are mutual best responses.

A 2-player game in normal form is represented by 
two payoff matrices.

p∗ = argmaxp pT (Aq∗) and q∗ = argmaxq qT (BT p∗)
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Best Responses and Extreme Points

Extreme points still correspond to best responses.

Any extreme point on the anti-dominant of the 
convex hull is a best response to some probability 
distribution (q,1-q) on columns 2 and 3.

c3
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Best Responses and Facets

But then faces can also correspond to best responses.

c3

c2

r1

r5
(2/3, 1/3)

P2,3

Theorem.              and             form a NE 
if and only if

             is a facet of          and             is a facet of          .

(r1, r5) (c2, c3)

P2,3 P1,5(r1, r5) (c2, c3)



Random Games



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



In random games matrix entries are drawn 
independently from a distribution.

e.g. U[0,1], N(0,1)

Random Games

So the #NE relates to the #facets in randomly 
generated polytopes. 



Random Polytopes

Points are in general position.



Random Polytopes

Points are in general position.

         All NE have supports of the same size.



Random Polytopes

Points are in general position.

         All NE have supports of the same size.
Proof.  Won’t have d+1 points on (d-1)-dimensional facet.



Random Polytopes

Points are in general position.

         All NE have supports of the same size.



Random Polytopes

Points are in general position.

         All NE have supports of the same size.

# extreme points        # facets ≤



Random Polytopes

Points are in general position.

         All NE have supports of the same size.

# extreme points        # facets ≤
Proof.  Each facet has d points;  each extreme point is on    d facets.≥



Random Polytopes

Points are in general position.

         All NE have supports of the same size.

# extreme points        # facets ≤



The # of Nash Equilibria



The # of Nash Equilibria

Theorem.  E(# d× d NE) ≥ E(#extreme points)2



The # of Nash Equilibria

Theorem.  E(# d× d NE) ≥ E(#extreme points)2

Proof.   A set R of d rows is a best response to
a set C of d columns with probability

#facets(n
d

)

and vice versa.
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The # of Nash Equilibria

But this isn’t enough. We need concentration bounds.

We expect lots of NE, even lots with 2x2 support.

Can we show that                                       is small?Pr(# d× d NE = 0)

Theorem. For the uniform distribution  
E(#d× d NE) " log2(d−1) n
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Concentration Bounds

Cap coverings give concentration bounds on: 
 

# extreme points

# faces

Combinatorially. For NE we examine the probability 
that a set S of rows forms a facet given that 
      (i) A set T of rows forms a face.
      (ii) We resample some of the coordinates.
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A Dumb Algorithm

Algorithm. Exhaustively search for dxd NE; d=1,2,...

Theorem. The algorithm finds a NE in polytime w.h.p.

Proof. There is a 2x2 NE w.h.p.
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Undominated Induced Cycles

Theorem.  There is a polytime algorithm to find a 
NE in a planar win-lose games.

Alice and Bob simply play the uniform distribution 
on their vertices in the cycle.

But an undominated, induced cycle gives a NE.

C
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Open Problems

Can we find a NE in a random game in 
expected polytime?

What other classes of game have 
polytime algorithms?


